In this chapter, we saw how building Python packages for our analysis applications can make it very easy for others to carry out their own analyses and reproduce ours. The stock_analysis package we created in this chapter contained classes for gathering stock data from the Internet (StockReader); visualizing individual assets or groups of them (Visualizer family); calculating metrics for single assets or groups of them for comparisons (StockAnalyzer and AssetGroupAnalyzer, respectively); and time series modeling with decomposition, ARIMA, and linear regression (StockModeler). We also got our first look at using the statsmodels package in the StockModeler class. This chapter showed us how the pandas, matplotlib, seaborn, and numpy functionality that we've covered so far in this book have come together and how these libraries can work harmoniously with other packages...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine