Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Feature Engineering Made Easy

You're reading from   Feature Engineering Made Easy Identify unique features from your dataset in order to build powerful machine learning systems

Arrow left icon
Product type Paperback
Published in Jan 2018
Publisher Packt
ISBN-13 9781787287600
Length 316 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Divya Susarla Divya Susarla
Author Profile Icon Divya Susarla
Divya Susarla
Sinan Ozdemir Sinan Ozdemir
Author Profile Icon Sinan Ozdemir
Sinan Ozdemir
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Introduction to Feature Engineering 2. Feature Understanding – What's in My Dataset? FREE CHAPTER 3. Feature Improvement - Cleaning Datasets 4. Feature Construction 5. Feature Selection 6. Feature Transformations 7. Feature Learning 8. Case Studies 9. Other Books You May Enjoy

Feature improvement – cleaning datasets

In this topic, we take the results of our understanding of the data and use them in order to clean the dataset. Much of this book will flow in such a way, using results from previous sections to be able to work on current sections. In feature improvement, our understanding will allow us to begin our first manipulations of datasets. We will be using mathematical transformations to enhance the given data, but not remove or insert any new attributes (this is for the next chapters).

We will explore several topics in this section, including:

  • Structuring unstructured data
  • Data imputing—inserting data where there was not a data before (missing data)
  • Normalization of data:
    • Standardization (known as z-score normalization)
    • Min-max scaling
    • L1 and L2 normalization (projecting into different spaces, fun stuff)

By this point in the book, we will be able to identify whether our data has a structure or not. That is, whether our data is in a nice, tabular format. If it is not, this chapter will give us the tools to transform that data into a more tabular format. This is imperative when attempting to create machine learning pipelines.

Data imputing is a particularly interesting topic. The ability to fill in data where data was missing previously is trickier than it sounds. We will be proposing all kinds of solutions from the very, very easy, merely removing the column altogether, boom no more missing data, to the interestingly complex, using machine learning on the rest of the features to fill in missing spots. Once we have filled in a bulk of our missing data, we can then measure how that affected our machine learning algorithms.

Normalization uses (generally simple) mathematical tools used to change the scaling of our data. Again, this ranges from the easy, turning miles into feet or pounds into kilograms, to the more difficult, such as projecting our data onto the unit sphere (more on that to come).

This chapter and remaining chapters will be much more heavily focused on our quantitative feature engineering procedure evaluation flow. Nearly every single time we look at a new dataset or feature engineering procedure, we will put it to the test. We will be grading the performance of various feature engineering methods on the merits of machine learning performance, speed, and other metrics. This text should only be used as a reference and not as a guide to select with feature engineering the procedures you are allowed to ignore based on difficulty and change in performance. Every new data task comes with its own caveats and may require different procedures than the previous data task.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image