Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Deep Reinforcement Learning Hands-On

You're reading from   Deep Reinforcement Learning Hands-On Apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more

Arrow left icon
Product type Paperback
Published in Jun 2018
Publisher Packt
ISBN-13 9781788834247
Length 546 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Maxim Lapan Maxim Lapan
Author Profile Icon Maxim Lapan
Maxim Lapan
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. What is Reinforcement Learning? FREE CHAPTER 2. OpenAI Gym 3. Deep Learning with PyTorch 4. The Cross-Entropy Method 5. Tabular Learning and the Bellman Equation 6. Deep Q-Networks 7. DQN Extensions 8. Stocks Trading Using RL 9. Policy Gradients – An Alternative 10. The Actor-Critic Method 11. Asynchronous Advantage Actor-Critic 12. Chatbots Training with RL 13. Web Navigation 14. Continuous Action Space 15. Trust Regions – TRPO, PPO, and ACKTR 16. Black-Box Optimization in RL 17. Beyond Model-Free – Imagination 18. AlphaGo Zero Other Books You May Enjoy Index

Proximal Policy Optimization

Historically, this method came from the OpenAI team and was proposed long after TRPO (which is from 2015), but PPO is much simpler than TRPO, so we'll start from it. The paper in which it was proposed is by John Schulman et al and called Proximal Policy Optimization Algorithms, published in 2017 (arXiv:1707.06347).

The core improvement over the classical Asynchronous Advantage Actor-Critic (A3C) method is to change the expression used to estimate the PG. Instead of the gradient of logarithm probability of the action taken, the PPO method uses a different objective: the ratio between the new and the old policy scaled by the advantages.

In math form, the old A3C objective could be written as Proximal Policy Optimization. The new objective proposed by the PPO is Proximal Policy Optimization. The reason behind changing the objective is the same as for the cross-entropy method from Chapter 4, The Cross-Entropy Method: importance sampling. However, if we just start to blindly maximize this value, it may lead to a very...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image