Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Building Data Streaming Applications with Apache Kafka

You're reading from   Building Data Streaming Applications with Apache Kafka Design, develop and streamline applications using Apache Kafka, Storm, Heron and Spark

Arrow left icon
Product type Paperback
Published in Aug 2017
Publisher Packt
ISBN-13 9781787283985
Length 278 pages
Edition 1st Edition
Tools
Arrow right icon
Authors (2):
Arrow left icon
Chanchal Singh Chanchal Singh
Author Profile Icon Chanchal Singh
Chanchal Singh
Manish Kumar Manish Kumar
Author Profile Icon Manish Kumar
Manish Kumar
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Introduction to Messaging Systems FREE CHAPTER 2. Introducing Kafka the Distributed Messaging Platform 3. Deep Dive into Kafka Producers 4. Deep Dive into Kafka Consumers 5. Building Spark Streaming Applications with Kafka 6. Building Storm Applications with Kafka 7. Using Kafka with Confluent Platform 8. Building ETL Pipelines Using Kafka 9. Building Streaming Applications Using Kafka Streams 10. Kafka Cluster Deployment 11. Using Kafka in Big Data Applications 12. Securing Kafka 13. Streaming Application Design Considerations

Playing with Avro using Schema Registry

Schema Registry allows you to store Avro schemas for both producers and consumers. It also provides a RESTful interface for accessing this schema. It stores all the versions of Avro schema, and each schema version is assigned a schema ID.

When the producer sends a record to Kafka topic using Avro Serialization, it does not send an entire schema, instead, it sends the schema ID and record. The Avro serializer keeps all the versions of the schema in cache and stores data with the schemas matching the schema ID.

The consumer also uses the schema ID to read records from Kafka topic, wherein the Avro deserializer uses the schema ID to deserialize the record.

The Schema Registry also supports schema compatibility where we can modify the setting of schema compatibility to support forward and backward compatibility.

Here is an example of Avro...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image