Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Applied Deep Learning on Graphs
Applied Deep Learning on Graphs

Applied Deep Learning on Graphs: Leverage graph data for business applications using specialized deep learning architectures

Arrow left icon
Profile Icon Lakshya Khandelwal Profile Icon Subhajoy Das
Arrow right icon
€37.99
Paperback Dec 2024 250 pages 1st Edition
eBook
€8.99 €29.99
Paperback
€37.99
Subscription
Free Trial
Renews at €18.99p/m
Arrow left icon
Profile Icon Lakshya Khandelwal Profile Icon Subhajoy Das
Arrow right icon
€37.99
Paperback Dec 2024 250 pages 1st Edition
eBook
€8.99 €29.99
Paperback
€37.99
Subscription
Free Trial
Renews at €18.99p/m
eBook
€8.99 €29.99
Paperback
€37.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Colour book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Table of content icon View table of contents Preview book icon Preview Book

Applied Deep Learning on Graphs

Introduction to Graph Learning

Graph data is a powerful and intuitive way of expressing information, and several practical scenarios can be better expressed using graph data than tabular approaches. Analyzing graph data has been a topic of study for decades, but it has only recently begun to capture the limelight due to advances in compute capabilities.

In this book, we aim to introduce you to the world of graphs. Here, we’ll begin by discussing what graph data is and the fundamental mathematical terminologies surrounding graphs. Next, we’ll take a small detour and discuss some common graph algorithms and their applications in graph data analytics. We’ll extend our discussion on graph data analytics to the requirement of graph deep learning and why it stands as a specialized subdomain compared to applying existing architectures.

In this chapter, we’ll cover the following topics:

  • Do we need graphs?
  • Formalizing graphs
  • Types and properties...

Do we need graphs?

The recent artificial intelligence (AI) revolution is the tip of the iceberg of a megatrend that has been impacting the computing industry for decades now. Over time, computing performance has increased exponentially against power consumed and cost; information storage costs have also decreased exponentially. To put this into perspective, while a terabyte of data can be stored in a disk costing around 100 US dollars in 2024, it would have taken more than a million dollars in the early 1990s!

Using computers and their derivative products, such as software, web applications, games, and multimedia content, has become deeply tied to our normal lifestyle. This dependence led to the need for understanding the behavior of all the interacting entities: humans, computer hardware, software such as web applications, and even organizations as a whole. The end goal was to find ways to make interactions more efficient, which could lead to unprecedented business opportunities...

Formalizing graphs

Graphs are a very popular concept in mathematics. In this domain, a common terminology is well accepted. Let’s take a closer look.

Definition and semantics

With the argument being made for graph representations to be a relevant topic for practical problems, let’s take a moment to define what a graph is. A graph is an abstract concept. Mathematically, it’s generally represented as <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>G</mml:mi><mml:mo>(</mml:mo><mml:mi>V</mml:mi><mml:mo>,</mml:mo><mml:mi>E</mml:mi><mml:mo>)</mml:mo></mml:math>, where <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>G</mml:mi></mml:math> is the graph, which contains a set of vertices, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>V</mml:mi></mml:math>, and a set of edges, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>E</mml:mi></mml:math>. Each element of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>E</mml:mi></mml:math> is a tuple, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mi>V</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mo>,</mml:mo><mml:mi>V</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mo>)</mml:mo></mml:math>, where <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>V</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mo>,</mml:mo><mml:mi>V</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mo>∈</mml:mo><mml:mi>V</mml:mi></mml:math>, and represents a connection between the two vertices. That’s all there is to the mathematical definition; how you choose to apply semantics to this is completely up to you.

In the example mentioned in the previous section, the users of the social media platform were represented by the vertices, and the connection between the two users was represented by the edges. Also, vertices and edges need not be so homogeneous. Consider the graph...

Types and properties of graphs

Several types of graphs have been identified, each with its unique properties, but we’ll focus on the ones that are most popular. Note that these types need not be mutually exclusive, meaning a graph can be labeled as more than one type at a time.

Directed graphs

Graphs are directed when the edges have a one-way relationship between their connecting nodes. There are many scenarios where the relationship that’s represented is unidirectional. In a graph representing a family tree, an edge might represent the relation “is a parent of,” and another might represent the relation “is a pet of.” Such relationships can’t be inverted between the nodes and hold the same meaning.

Bipartite graphs

A bipartite graph is a type of graph whose vertices can be divided into two disjoint sets such that every edge connects a vertex from one set to a vertex in the other set. In other words, there are no edges that...

Graph data structures

How should we feed graph data into computer programs so that we can apply graph-based algorithms to solve problems? This will be addressed in this section. Each representation has its advantages and disadvantages, and we’ll explore them from the perspective of the time complexity of determining whether an edge exists and updating the graph.

Adjacency matrix

The adjacency matrix aims to record the graph structure via a matrix. A matrix, say <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>A</mml:mi></mml:math>, of size <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>v</mml:mi><mml:mo>×</mml:mo><mml:mi>v</mml:mi></mml:math> is created (where <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>v</mml:mi></mml:math> denotes the number of nodes, or mathematically, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>v</mml:mi><mml:mo>=</mml:mo><mml:mo>|</mml:mo><mml:mi>V</mml:mi><mml:mo>|</mml:mo></mml:math>). We start with all entries of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>A</mml:mi></mml:math> being 0. Next, if <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mo>(</mml:mo><mml:msub><mml:mrow><mml:mi>v</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub></mml:math>, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>v</mml:mi></mml:mrow><mml:mrow><mml:mi>j</mml:mi></mml:mrow></mml:msub><mml:mo>)</mml:mo><mml:mo>∈</mml:mo><mml:mi>E</mml:mi></mml:math>, then element <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mo>(</mml:mo><mml:mi>i</mml:mi><mml:mo>,</mml:mo><mml:mi>j</mml:mi><mml:mo>)</mml:mo></mml:math> of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>A</mml:mi></mml:math> is labeled 1. If the graph is undirected, then if <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mo>(</mml:mo><mml:msub><mml:mrow><mml:mi>v</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub></mml:math>, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>v</mml:mi></mml:mrow><mml:mrow><mml:mi>j</mml:mi></mml:mrow></mml:msub><mml:mo>)</mml:mo><mml:mo>∈</mml:mo><mml:mi>E</mml:mi></mml:math>, then both elements of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>A</mml:mi></mml:math>, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mo>(</mml:mo><mml:mi>i</mml:mi><mml:mo>,</mml:mo><mml:mi>j</mml:mi><mml:mo>)</mml:mo></mml:math>, and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mo>(</mml:mo><mml:mi>j</mml:mi><mml:mo>,</mml:mo><mml:mi>i</mml:mi><mml:mo>)</mml:mo></mml:math>, are labeled 1.

The time complexity to check whether an edge exists in an adjacency matrix is <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:math> since it just involves checking a particular cell in the matrix. However, adding a new vertex to the graph would be difficult, and depending on the matrix implementation, it might need...

Traditional graph-based solutions

Many computer scientists have etched their names in history by devising elegant solutions to seemingly complex problems involving graphs. However, graphs aren’t just confined to the algorithm books, and graph-based problems are common in the wild. Lots of business problems and scientific research can be boiled down to graph-based problems, on which existing solutions can be implemented to generate the required output. In this section, we’ll talk about the most popular problems in the domain of graphs, a few approaches to solving them, and where these problems are encountered in practical scenarios.

Searching

There are two fundamental approaches when performing a search over a graph: breadth-first and depth-first. Both are means to traverse a graph from a starting point to all nodes that can be reached from the initial node, but the differentiating factor is their approach.

In BFS, the algorithm explores a graph level by level...

The need for representation learning

Here, we’ll introduce a new concept called representation learning for graphs. Let’s use a small analogy to understand what this means. A typical corporate organization has several entities: employees, IT equipment, offices, and so on. All these entities maintain different types of relationships with each other: employees can be related to each other based on organizational hierarchy; one employee may use several pieces of IT equipment; several pieces of equipment, such as servers, can be networked with each other; employees and equipment can report physically or be located in a particular office, respectively; and so on.

A graph, quite rightly, seems like a natural way to represent this information, like this:

Figure 1.8 – A graph showing the different entities in an organization interacting with each other

Figure 1.8 – A graph showing the different entities in an organization interacting with each other

Graphs are very visually intuitive. However, performing algorithmic calculations on graphs...

GNNs and the need for a separate vertical

We won’t dive into the details of what GNNs do or how they differ from other popular neural network architectures in this chapter. Here, we’ll merely attempt to explain why there’s a need to study GNNs separately from other deep learning architectures.

Before talking about the differences, we must discuss the similarities. GNNs are an architecture choice that’s specialized for processing graph data and outputting representations or node embeddings. Similar to how convolutional networks are fundamental for reading pixel data, the set of architectures under GNNs are optimized for reading graph data. GNN-based learning tasks follow the same trajectory as other deep learning solutions: to iteratively optimize the parameters of the model so that a loss function can be minimized. In the case of GNNs, the loss function often tries to capture and preserve meaningful information about the graph structure.

Now, let&...

Summary

In this chapter, we covered the foundational concepts in graph learning and representation. We began with motivating examples of how graph structures naturally capture relationships between entities, making them a powerful data representation. Then, formal definitions of graphs, common graph types, and key properties were discussed. We also looked at popular graph algorithms such as searching, partitioning, and path optimization, along with their real-world use cases.

A key idea presented here was the need for representation learning on graphs. Converting graph data into vector embeddings allows us to leverage the capabilities of machine learning models. Benefits such as scalability, flexibility, and robustness make graph embeddings an enabling technique.

Finally, we justified the need for specialized GNN architectures. Factors such as irregular structure, permutation invariance, and complex operations such as aggregation and pooling necessitate tailored solutions. GNNs...

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Explore graph data in real-world systems and leverage graph learning for impactful business results
  • Dive into popular and specialized deep neural architectures like graph convolutional and attention networks
  • Learn how to build scalable and productionizable graph learning solutions
  • Purchase of the print or Kindle book includes a free PDF eBook

Description

With their combined expertise spanning cutting-edge AI product development at industry giants such as Walmart, Adobe, Samsung, and Arista Networks, Lakshya and Subhajoy provide real-world insights into the transformative world of graph neural networks (GNNs). This book demystifies GNNs, guiding you from foundational concepts to advanced techniques and real-world applications. You’ll see how graph data structures power today’s interconnected world, why specialized deep learning approaches are essential, and how to address challenges with existing methods. You’ll start by dissecting early graph representation techniques such as DeepWalk and node2vec. From there, the book takes you through popular GNN architectures, covering graph convolutional and attention networks, autoencoder models, LLMs, and technologies such as retrieval augmented generation on graph data. With a strong theoretical grounding, you’ll seamlessly navigate practical implementations, mastering the critical topics of scalability, interpretability, and application domains such as NLP, recommendations, and computer vision. By the end of this book, you’ll have mastered the underlying ideas and practical coding skills needed to innovate beyond current methods and gained strategic insights into the future of GNN technologies.

Who is this book for?

For data scientists, machine learning practitioners, researchers delving into graph-based data, and software engineers crafting graph-related applications, this book offers theoretical and practical guidance with real-world examples. A foundational grasp of ML concepts and Python is presumed.

What you will learn

  • Discover how to extract business value through a graph-centric approach
  • Develop a basic understanding of learning graph attributes using machine learning
  • Identify the limitations of traditional deep learning with graph data and explore specialized graph-based architectures
  • Understand industry applications of graph deep learning, including recommender systems and NLP
  • Identify and overcome challenges in production such as scalability and interpretability
  • Perform node classification and link prediction using PyTorch Geometric
Estimated delivery fee Deliver to Netherlands

Premium delivery 7 - 10 business days

€17.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Dec 27, 2024
Length: 250 pages
Edition : 1st
Language : English
ISBN-13 : 9781835885963
Category :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Colour book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Estimated delivery fee Deliver to Netherlands

Premium delivery 7 - 10 business days

€17.95
(Includes tracking information)

Product Details

Publication date : Dec 27, 2024
Length: 250 pages
Edition : 1st
Language : English
ISBN-13 : 9781835885963
Category :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
Banner background image

Table of Contents

18 Chapters
Part 1: Foundations of Graph Learning Chevron down icon Chevron up icon
Chapter 1: Introduction to Graph Learning Chevron down icon Chevron up icon
Chapter 2: Graph Learning in the Real World Chevron down icon Chevron up icon
Chapter 3: Graph Representation Learning Chevron down icon Chevron up icon
Part 2: Advanced Graph Learning Techniques Chevron down icon Chevron up icon
Chapter 4: Deep Learning Models for Graphs Chevron down icon Chevron up icon
Chapter 5: Graph Deep Learning Challenges Chevron down icon Chevron up icon
Chapter 6: Harnessing Large Language Models for Graph Learning Chevron down icon Chevron up icon
Part 3: Practical Applications and Implementation Chevron down icon Chevron up icon
Chapter 7: Graph Deep Learning in Practice Chevron down icon Chevron up icon
Chapter 8: Graph Deep Learning for Natural Language Processing Chevron down icon Chevron up icon
Chapter 9: Building Recommendation Systems Using Graph Deep Learning Chevron down icon Chevron up icon
Chapter 10: Graph Deep Learning for Computer Vision Chevron down icon Chevron up icon
Part 4: Future Directions Chevron down icon Chevron up icon
Chapter 11: Emerging Applications Chevron down icon Chevron up icon
Chapter 12: The Future of Graph Learning Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela