Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Apache Solr Search Patterns

You're reading from   Apache Solr Search Patterns Leverage the power of Apache Solr to power up your business by navigating your users to their data quickly and efficiently

Arrow left icon
Product type Paperback
Published in Apr 2015
Publisher
ISBN-13 9781783981847
Length 316 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Jayant Kumar Jayant Kumar
Author Profile Icon Jayant Kumar
Jayant Kumar
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Solr Indexing Internals FREE CHAPTER 2. Customizing the Solr Scoring Algorithm 3. Solr Internals and Custom Queries 4. Solr for Big Data 5. Solr in E-commerce 6. Solr for Spatial Search 7. Using Solr in an Advertising System 8. AJAX Solr 9. SolrCloud 10. Text Tagging with Lucene FST Index

Working of a scorer on an inverted index

We have, so far, understood what an inverted index is and how relevance calculation works. Let us now understand how a scorer works on an inverted index. Suppose we have an index with the following three documents:

Working of a scorer on an inverted index

3 Documents

To index the document, we have applied WhitespaceTokenizer along with the EnglishMinimalStemFilterFactory class. This breaks the sentence into tokens by splitting whitespace, and EnglishMinimalStemFilterFactory converts plural English words to their singular forms. The index thus created would be similar to that shown as follows:

Working of a scorer on an inverted index

An inverted index

A search for the term orange will give documents 2 and 3 in its result. On running a debug on the query, we can see that the scores for both the documents are different and document 2 is ranked higher than document 3. The term frequency of orange in document 2 is higher than that in document 3.

However, this does not affect the score much as the number of terms in the document is small...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image