Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Advanced Deep Learning with Keras

You're reading from   Advanced Deep Learning with Keras Apply deep learning techniques, autoencoders, GANs, variational autoencoders, deep reinforcement learning, policy gradients, and more

Arrow left icon
Product type Paperback
Published in Oct 2018
Publisher Packt
ISBN-13 9781788629416
Length 368 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Rowel Atienza Rowel Atienza
Author Profile Icon Rowel Atienza
Rowel Atienza
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Introducing Advanced Deep Learning with Keras FREE CHAPTER 2. Deep Neural Networks 3. Autoencoders 4. Generative Adversarial Networks (GANs) 5. Improved GANs 6. Disentangled Representation GANs 7. Cross-Domain GANs 8. Variational Autoencoders (VAEs) 9. Deep Reinforcement Learning 10. Policy Gradient Methods Other Books You May Enjoy Index

StackedGAN


In the same spirit as InfoGAN, StackedGAN proposes a method for disentangling latent representations for conditioning generator outputs. However, StackedGAN uses a different approach to the problem. Instead of learning how to condition the noise to produce the desired output, StackedGAN breaks down a GAN into a stack of GANs. Each GAN is trained independently in the usual discriminator-adversarial manner with its own latent code.

Figure 6.2.1 shows us how StackedGAN works in the context of the hypothetical celebrity face generation. Assuming that the Encoder network is trained to classify celebrity faces.

The Encoder network is made of a stack of simple encoders, Encoder i where i = 0 … n - 1 corresponding to n features. Each encoder extracts certain facial features. For example, Encoder0 may be the encoder for hairstyle features, Features1. All the simple encoders contribute to making the overall Encoder perform correct predictions.

The idea behind StackedGAN is that if we would...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime