In this article by Jeff Stokes and Manuel Singer, authors of the book Mastering the Microsoft Deployment Toolkit 2013, we will discuss how to utilize Microsoft Deployment Toolkit (MDT) to make the complex world of device drivers into a much more manageable experience. We will focus on how drivers get installed via MDT, how to specifically control the drivers that get installed, and general best practices around proper driver management.
We will cover the following topics in this article:
(For more resources related to this topic, see here.)
Those of us who created images for the deployment of Windows XP were often met with an enormous challenge of dealing with drivers for many different models of hardware. We were already forced to create separate images for different hardware abstraction layer (HAL) families. Additionally, in order to deal with different hardware models within the same HAL family, the standard practice was to usually have a folder called C:Drivers, which contained a copy of every possible driver that could be required by this image for all of the different hardware models it would be installed to. There was an OemPnPDriversPath entry in the registry that individually listed each of the driver paths (subfolders under the C:Drivers directory) for the Windows Plug and Play process to locate and install the driver. As you can imagine, this was not a very efficient way to manage drivers. One reason is that every driver for every machine was staged in the image, causing the image size to grow. Another reason being that we were relying on Plug and Play to figure out the right driver to install, which gives us less control of the driver that actually gets installed, based on a driver ranking process.
Fast forward to Windows Vista and current versions of Windows, and we can now utilize the magic of offline servicing to inject drivers into our Windows Imaging Format (WIM) as it is getting deployed. With this in mind, consider the concept of having your customized Windows image created through your reference image build process, but it contains no drivers. Now, when we deploy this image, we can utilize a process to detect all the hardware in the target machine, and then grab only the correct drivers that we need for this particular machine. Then, we can utilize Deployment Image Servicing and Management (DISM) to inject them into our WIM before the WIM actually gets installed, therefore, making the drivers available to be installed as Windows is installed on this machine. MDT is doing just that.
When we boot a target machine via our Lite Touch media, one of the initial task sequence steps will enumerate (via PnpEnum) all the PNP IDs for every device in the machine. Then, as part of the inject drivers task sequence step, we will search all of our Out-of-Box driver INF files to find the matching driver, then MDT will utilize DISM to inject these drivers offline into the WIM.
Note that, by default, we will be searching our entire Out-of-Box repository and letting PnP figure things out.
We can force MDT to only choose from drivers that we specify, therefore, gaining strict control over which drivers actually get installed.
The preceding scenario indicates that this whole process hinges on the fact that we are searching through driver INF files to find matching PNP IDs in order to correctly detect and install the correct driver. This brings up a concern: what if the driver does not contain an INF file, but rather it simply has to be installed via an EXE program? In this scenario, we cannot utilize the driver injection process. Instead, we would treat that driver as an application in MDT, meaning we would add a new application, using the EXE program as the source files, specifying the command-line syntax to launch the driver install program and install silently, and then adding this application as a task sequence step. I will later demonstrate how to utilize conditional statements in your task sequence to only install that driver program on the model that it applies to; therefore, keeping our task sequence flexible to be able to install correctly on any hardware.
The first step will be to visit the OEM Manufacturer’s website and download all the device drivers for each model machine that we will be deploying to. Note that many OEMs now offer a deployment-specific download or CAB file that has all the drivers for a particular model compressed into one single CAB file. This benefits you as you will not have to go through the hassle of downloading and extracting each individual driver for each device separately (NIC, video, audio, and so on). Once you download the necessary drivers, store them in a folder for each specific model, as you will need to extract the drivers within your folder before importing them into MDT.
Next, we want to create a folder structure under the Out-of-Box Drivers node in MDT to organize our drivers. This will not only allow easy manageability of drivers, as new drivers are released by the OEM; but if we name the folders to match the model names exactly, we can later introduce logic to limit our PnP search to the exact folder that contains the correct drivers for our particular hardware model. As we will have different drivers for x86 and x64, as well as for different operating systems, a general best practice would be to create the first hierarchy of your folder structure. Perform the following steps to populate the node in MDT:
There is a checkbox stating Import drivers even if they are duplicates of an existing driver. This is because MDT is utilizing the single instance storage technology to store the drivers in the actual deployment share. If you are importing multiple copies of a drivers to different folders, MDT only stores one copy of the file in the actual filesystem by default, and the folder structure you see within the MDT Workbench will be pointing duplicates to the same file in order to not waste space.
As new drivers are released from the OEM, you can simply replace the drivers by going to the particular folder for this model, removing the old drivers, and importing the new drivers. Then, the next time you install your WIM in this model, you will be using the new drivers, and you won’t have to make any modifications or updates to your WIM.
In this article, we understood offline servicing, MDT method for driver detection and injection, and how to populate the Out-of-Box Drivers node of MDT.
For more information related to MDT, refer to the following book by Packt Publishing:
Mastering the Microsoft Deployment Toolkit 2013: https://www.packtpub.com/hardware-and-creative/mastering-microsoft-deployment-toolkit-2013
Further resources on this subject: