Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds

How-To Tutorials - Mobile Game Development

3 Articles
article-image-building-mobile-games-craftyjs-and-phonegap-part-3
Robi Sen
13 Jul 2015
9 min read
Save for later

Building Mobile Games with Crafty.js and PhoneGap, Part 3

Robi Sen
13 Jul 2015
9 min read
In this post, we will build upon what we learned in our previous series on using Crafty.js, HTML5, JavaScript, and PhoneGap to make a mobile game. In this post we will add a trigger to call back our monster AI, letting the monsters know it’s their turn to move, so each time the player moves the monsters will also move. Structuring our code with components Before we begin updating our game, let’s clean up our code a little bit. First let’s abstract out some of the code into separate files so it’s easier to work, read, edit, and develop our project. Let’s make a couple of components. The first one will be called PlayerControls.js and will tell the system what direction to move an entity when we touch on the screen. To do this, first create a new directory under your project WWW directory called src. Then create a new directory in src called com . In the folder create a new file called PlayerControls.js. Now open the file and make it look like the following: // create a simple object that describes player movement Crafty.c("PlayerControls", { init: function() { //lets now make the hero move where ever we touch Crafty.addEvent(this, Crafty.stage.elem, 'mousedown', function(e) { // lets simulate a 8 way controller or old school joystick //build out the direction of the mouse point. Remember that y increases as it goes 'downward' if (e.clientX < (player.x+Crafty.viewport.x) && (e.clientX - (player.x+Crafty.viewport.x))< 32) { myx = -1; } else if (e.clientX > (player.x+Crafty.viewport.x) && (e.clientX - (player.x+Crafty.viewport.x)) > 32){ myx = 1; } else { myx = 0; } if (e.clientY < (player.y+Crafty.viewport.y) && (e.clientY - (player.y+Crafty.viewport.y))< 32) { myy= -1; } else if (e.clientY > (player.y+Crafty.viewport.y) && (e.clientY - (player.y+Crafty.viewport.y)) > 32){ myy= 1; } else { myy = 0;} // let the game know we moved and where too var direction = [myx,myy]; this.trigger('Slide',direction); Crafty.trigger('Turn'); lastclientY = e.clientY; lastclientX = e.clientX; console.log("my x direction is " + myx + " my y direction is " + myy) console.log('mousedown at (' + e.clientX + ', ' + e.clientY + ')'); }); } }); You will note that this is very similar to the PlayerControls  component in our current index.html. One of the major differences is now we are decoupling the actual movement of our player from the mouse/touch controls. So if you look at the new PlayerControls component you will notice that all it does is set the X and Y direction, relative to a player object, and pass those directions off to a new component we are going to make called Slide. You will also see that we are using crafty.trigger to trigger an event called turn. Later in our code we are going to detect that trigger to active a callback to our monster AI letting the monsters know it’s their turn to move, so each time the player moves the monsters will also move. So let’s create a new component called Slide.js and it will go in your com directory with PlayerControls.js. Now open the file and make it look like this: Crafty.c("Slide", { init: function() { this._stepFrames = 5; this._tileSize = 32; this._moving = false; this._vx = 0; this._destX = 0; this._sourceX = 0; this._vy = 0; this._destY = 0; this._sourceY = 0; this._frames = 0; this.bind("Slide", function(direction) { // Don't continue to slide if we're already moving if(this._moving) return false; this._moving = true; // Let's keep our pre-movement location this._sourceX = this.x; this._sourceY = this.y; // Figure out our destination this._destX = this.x + direction[0] * 32; this._destY = this.y + direction[1] * 32; // Get our x and y velocity this._vx = direction[0] * this._tileSize / this._stepFrames; this._vy = direction[1] * this._tileSize / this._stepFrames; this._frames = this._stepFrames; }).bind("EnterFrame",function(e) { if(!this._moving) return false; // If we'removing, update our position by our per-frame velocity this.x += this._vx; this.y += this._vy; this._frames--; if(this._frames == 0) { // If we've run out of frames, // move us to our destination to avoid rounding errors. this._moving = false; this.x = this._destX; this.y = this._destY; } this.trigger('Moved', {x: this.x, y: this.y}); }); }, slideFrames: function(frames) { this._stepFrames = frames; }, // A function we'll use later to // cancel our movement and send us back to where we started cancelSlide: function() { this.x = this._sourceX; this.y = this._sourceY; this._moving = false; } }); As you can see, it is pretty straightforward. Basically, it handles movement by accepting a direction as a 0 or 1 within X and Y axis’. It then moves any entity that inherits its behavior some number of pixels; in this case 32, which is the height and width of our floor tiles. Now let’s do a little more housekeeping. Let’s pull out the sprite code in to a Sprites.js file and the asset loading code into a Loading.js  file. So create to new files, Sprites.js and Loading.js respectively, in your com directory and edit them to looking like the following two listings. Sprites.js: Crafty.sprite(32,"assets/dungeon.png", { floor: [0,1], wall1: [18,0], stairs: [3,1] }); // This will create entities called hero1 and blob1 Crafty.sprite(32,"assets/characters.png", { hero: [11,4], goblin1: [8,14] }); Loading.js: Crafty.scene("loading", function() { //console.log("pants") Crafty.load(["assets/dungeon.png","assets/characters.png"], function() { Crafty.scene("main"); // Run the main scene console.log("Done loading"); }, function(e) { //progress }, function(e) { //somethig is wrong, error loading console.log("Error,failed to load", e) }); }); Okay, now that is done let’s redo our index.html to make it cleaner: <!DOCTYPE html> <html> <head></head> <body> <div id="game"></div> <script type="text/javascript" src="lib/crafty.js"></script> <script type="text/javascript" src="src/com/loading.js"></script> <script type="text/javascript" src="src/com/sprites.js"></script> <script type="text/javascript" src="src/com/Slide.js"></script> <script type="text/javascript" src="src/com/PlayerControls.js"></script> <script> // Initialize Crafty Crafty.init(500, 320); // Background Crafty.background('green'); Crafty.scene("main",function() { Crafty.background("#FFF"); player = Crafty.e("2D, Canvas,PlayerControls, Slide, hero") .attr({x:0, y:0}) goblin = Crafty.e("2D, Canvas, goblin1") .attr({x:50, y:50}); }); Crafty.scene("loading"); </script> </body> </html> Go ahead save the file and load it in your browser. Everything should work as expected but now our index file and directory is a lot cleaner and easier to work with. Now that this is done, let’s get to giving the monster the ability to move on its own. Monster fun – moving game agents We are up to the point that we are able to move the hero of our game around the game screen with mouse clicks/touches. Now we need to make things difficult for our hero and make the monster move as well. To do this we need to add a very simple component that will move the monster around after our hero moves. To do this create a file called AI.js in the com directory. Now open it and edit it to look like this:   Crafty.c("AI",{ _directions: [[0,-1], [0,1], [1,0], [-1,0]], init: function() { this._moveChance = 0.5; this.requires('Slide'); this.bind("Turn",function() { if(Math.random() < this._moveChance) { this.trigger("Slide", this._randomDirection()); } }); }, moveChance: function(val) { this._moveChance = val; }, _randomDirection: function() { return this._directions[Math.floor(Math.random()*4)]; } }); As you can see all AI.js does, when called, is feed random directions to slide. Now we will add the AI component to the goblin entity. To do this editing your index.html to look like the following: <!DOCTYPE html> <html> <head></head> <body> <div id="game"></div> <script type="text/javascript" src="lib/crafty.js"></script> <script type="text/javascript" src="src/com/loading.js"></script> <script type="text/javascript" src="src/com/sprites.js"></script> <script type="text/javascript" src="src/com/Slide.js"></script> <script type="text/javascript" src="src/com/AI.js"></script> <script type="text/javascript" src="src/com/PlayerControls.js"></script> <script> Crafty.init(500, 320); Crafty.background('green'); Crafty.scene("main",function() { Crafty.background("#FFF"); player = Crafty.e("2D, Canvas,PlayerControls, Slide, hero") .attr({x:0, y:0}) goblin = Crafty.e("2D, Canvas, AI, Slide, goblin1") .attr({x:50, y:50}); }); Crafty.scene("loading"); </script> </body> </html> Here you will note we added a new entity called goblin and added the components Slide and AI. Now save the file and load it. When you move your hero you should see the goblin move as well like in this screenshot: Summary While this was a long post, you have learned a lot. Now that we have the hero and goblin moving in our game, we will build a dungeon in part 4, enable our hero to fight goblins, and create a PhoneGap build for our game. About the author Robi Sen, CSO at Department 13, is an experienced inventor, serial entrepreneur, and futurist whose dynamic twenty-plus year career in technology, engineering, and research has led him to work on cutting edge projects for DARPA, TSWG, SOCOM, RRTO, NASA, DOE, and the DOD. Robi also has extensive experience in the commercial space, including the co-creation of several successful start-up companies. He has worked with companies such as UnderArmour, Sony, CISCO, IBM, and many others to help build out new products and services. Robi specializes in bringing his unique vision and thought process to difficult and complex problems, allowing companies and organizations to find innovative solutions that they can rapidly operationalize or go to market with.
Read more
  • 0
  • 0
  • 3111

article-image-building-mobile-games-craftyjs-and-phonegap-part-2
Robi Sen
15 May 2015
7 min read
Save for later

Building Mobile Games with Crafty.js and PhoneGap - Part 2

Robi Sen
15 May 2015
7 min read
Building Mobile Games with Crafty.js and PhoneGap - Part 2 Let’s continue making a simple turn-based RPG-like game based on Pascal Rettig’s Crafty Workshop presentation with PhoneGap. In the second part of this two-part series, you will learn how to add sprites to a game, control them, and work with mouse/touch events. Adding sprites OK, let’s add some sprites to the mix using open source sprite sheets from RLTiles. All of the resources at RLTiles are in public domain, but the ones we will need are the dungeon tiles, which you can find here, and the monsters, which you can find here. To use them, first create a new folder under your www root directory in your PhoneGap project called assets. Then, click on the Dungeon link and right-click on the dungeon  sprite sheet and select Save as. Save it as dungeon.png to your assets directory. Do the same with monsters, but call it characters.png.  Now, edit index.html to look like listing 1. Listing 1: Loading sprites in Crafty <!DOCTYPE html> <html> <head></head> <body> <div id="game"></div> <script type="text/javascript" src="lib/crafty.js"></script> <script> var WIDTH = 500, HEIGHT = 320; Crafty.init(WIDTH, HEIGHT); // Background Crafty.background("black"); //let’s loads some assets for the game // This will create entities called floor, wall1, and stairs Crafty.sprite(32,"assets/dungeon.png", { floor: [0,0], wall1: [2,1], stairs: [3,1] }); // This will create entities called hero1 and blob1 Crafty.sprite(32,"assets/characters.png", { hero: [11,4],goblin1: [8,14] }); Crafty.scene("loading", function() { Crafty.load(["assets/dungeon.png","assets/characters.png"], function() { Crafty.scene("main"); // Run the main scene console.log("Done loading"); }, function(e) { //progress }, function(e) { //somethig is wrong, error loading console.log("Error,failed to load", e) }); }); Crafty.scene("loading"); // Let's draw us a Hero and a Goblin Crafty.scene("main",function() { Crafty.background("#FFF"); var player = Crafty.e("2D, Canvas, hero") .attr({x:0, y:0}); var goblin = Crafty.e("2D, Canvas, goblin1") .attr({x:50, y:50}); }); </script> </body> </html> There are a couple of things to note in this code. Firstly, we are using Crafty.sprite to load sprites from a sprite file. The first attribute in the sprite(), 32, references the size of the sprite. The second is the location of the sprite sheet. Next, we set the name of each sprite we want to load and its location. For example, floor(0,0) means grab the very first sprite on the sprite sheet, assign it the label floor, and load it into memory. Next is a very important Crafty function; Crafty.scene(). In Crafty, scenes are a way to organize your game objects and easily transition between levels or screens. In our case, we first use Crafty.scene() to load a bunch of assets, our sprite sheets, and when done, we tell it to call the main() scene. Next, we actually call loading, which loads our assets and then calls the main() scene. In the main() scene, we create the player and goblin entities. Try saving the file and loading it in your browser. You should see something like figure 1.   Figure 1: Loading the hero and goblin sprites in Chrome Movement Now that we have figured out how to load the sprites, let’s figure out how to move them. First, we want to move and control our hero. To do this, we want to make a component, which is an abstracted set of data or behaviors we can then assign to an entity. To do that, open your index.html file again and edit it to look like listing 2. Listing 2: Controlling the hero <!DOCTYPE html> <html> <head></head> <body> <div id="game"></div> <script type="text/javascript" src="lib/crafty.js"></script> <script> var WIDTH = 500, HEIGHT = 320; Crafty.init(WIDTH, HEIGHT); Crafty.sprite(32,"assets/dungeon.png", { floor: [0,0], wall1: [2,1], stairs: [3,1] }); Crafty.sprite(32,"assets/characters.png", { hero: [11,4], goblin1: [8,14] }); // create a simple object that describes player movement Crafty.c("PlayerControls", { init: function() { //let’s now make the hero move wherever we touch Crafty.addEvent(this, Crafty.stage.elem, 'mousedown', function(e) { // let’s simulate an 8-way controller or old school joystick console.log("the values are; x= " + e.clientX ); if (e.clientX<player.x&& (e.clientX - player.x)< 32) {player.x= player.x - 32;} else if (e.clientX>player.x&& (e.clientX - player.x) > 32){ player.x = player.x + 32; } else {player.x = player.x} if (e.clientY<player.y&& (e.clientY - player.y)< 32) {player.y= player.y - 32;} else if (e.clientY>player.y&& (e.clientY - player.y) > 32){ player.y = player.y + 32; } else {player.y = player.y} Crafty.trigger('Turn'); console.log('mousedown at (' + e.clientX + ', ' + e.clientY + ')'); }); } }); Crafty.scene("loading", function() { Crafty.load(["assets/dungeon.png","assets/characters.png"], function() { Crafty.scene("main"); // Run the main scene console.log("Done loading"); }, function(e) { //progress }, function(e) { //somethig is wrong, error loading console.log("Error,failed to load", e) }); }); Crafty.scene("loading"); // Let's draw us a Hero and a mean Goblin Crafty.scene("main",function() { Crafty.background("#FFF"); player = Crafty.e("2D, Canvas,Fourway, PlayerControls, hero") .attr({x:0, y:0}) goblin = Crafty.e("2D, Canvas, goblin1") .attr({x:50, y:50}); }); </script> </body> </html> In listing 2, the main thing to focus on is the PlayerControls component defined by Crafty.c(). In the component, we are going to simulate a typical 8-way controller. For our PlayerControls component, we want the player to only be able to move one tile, which is 32 pixels, each time they select a direction they want to move. We do this by using Crafty.addEvent and having it update the player’s location based on the direction of where the user touched, which is derived by getting the relative location of the user’s touch from client.x, client.y in relation to the hero’s position, which is player.x, player.y. Save the file and view it. View the file using the inspect element option, and you should see something like figure 2.   Figure 2: Controlling the hero You can now control the movement of the hero in the game. Summary In this two-part series, you learned about working with Crafty.js. Specifically, you learned how to work with the Crafty API, create entities, work with sprites, create components, and control entities via mouse/touch. About the author Robi Sen, CSO at Department 13, is an experienced inventor, serial entrepreneur, and futurist whose dynamic twenty-plus-year career in technology, engineering, and research has led him to work on cutting edge projects for DARPA, TSWG, SOCOM, RRTO, NASA, DOE, and the DOD. Robi also has extensive experience in the commercial space, including the co-creation of several successful start-up companies. He has worked with companies such as UnderArmour, Sony, CISCO, IBM, and many others to help build new products and services. Robi specializes in bringing his unique vision and thought process to difficult and complex problems, allowing companies and organizations to find innovative solutions that they can rapidly operationalize or go to market with.
Read more
  • 0
  • 0
  • 2835

article-image-building-mobile-games-craftyjs-and-phonegap-part-1
Robi Sen
18 Mar 2015
7 min read
Save for later

Building Mobile Games with Crafty.js and PhoneGap: Part 1

Robi Sen
18 Mar 2015
7 min read
In this post, we will build a mobile game using HTML5, CSS, and JavaScript. To make things easier, we are going to make use of the Crafty.js JavaScript game engine, which is both free and open source. In this first part of a two-part series, we will look at making a simple turn-based RPG-like game based on Pascal Rettig’s Crafty Workshop presentation. You will learn how to add sprites to a game, control them, and work with mouse/touch events. Setting up To get started, first create a new PhoneGap project wherever you want in which to do your development. For this article, let’s call the project simplerpg. Figure 1: Creating the simplerpg project in PhoneGap. Navigate to the www directory in your PhoneGap project and then add a new director called lib. This is where we are going to put several JavaScript libraries we will use for the project. Now, download the JQuery library to the lib directory. For this project, we will use JQuery 2.1. Once you have downloaded JQuery, you need to download the Crafty.js library and add it to your lib directory as well. For later parts of this series,you will want to be using a web server such as Apache or IIS to make development easier. For the first part of the post, you can just drag-and-drop the HTML files into your browser to test, but later, you will need to use a web browser to avoid Same Origin Policy errors. This article assumes you are using Chrome to develop in. While IE or FireFox will work just fine, Chrome is used in this article and its debugging environment. Finally, the source code for this article can be found here on GitHub. In the lessons directory, you will see a series of index files with a listing number matching each code listing in this article. Crafty PhoneGap allows you to take almost any HTML5 application and turn it into a mobile app with little to no extra work. Perhaps the most complex of all mobile apps are videos. Video games often have complex routines, graphics, and controls. As such, developing a video game from the ground up is very difficult. So much so that even major video game companies rarely do so. What they usually do, and what we will do here, is make use of libraries and game engines that take care of many of the complex tasks of managing objects, animation, collision detection, and more. For our project, we will be making use of the open source JavaScript game engine Crafty. Before you get started with the code, it’s recommended to quickly review the website here and review the Crafty API here. Bootstrapping Crafty and creating an entity Crafty is very simple to start working with. All you need to do is load the Crafty.js library and initialize Crafty. Let’s try that. Create an index.html file in your www root directory, if one does not exist; if you already have one, go ahead and overwrite it. Then, cut and paste listing 1 into it. Listing 1: Creating an entity <!DOCTYPE html> <html> <head></head> <body> <div id="game"></div> <script type="text/javascript" src="lib/crafty.js"></script> <script> // Height and Width var WIDTH = 500, HEIGHT = 320; // Initialize Crafty Crafty.init(WIDTH, HEIGHT); var player = Crafty.e(); player.addComponent("2D, Canvas, Color") player.color("red").attr({w:50, h:50}); </script> </body> </html> As you can see in listing 1, we are creating an HTML5 document and loading the Crafty.js library. Then, we initialize Crafty and pass it a width and height. Next, we create a Crafty entity called player. Crafty, like many other game engines, follows a design pattern called Entity-Component-System or (ECS). Entities are objects that you can attach things like behaviors and data to. For ourplayerentity, we are going to add several components including 2D, Canvas, and Color. Components can be data, metadata, or behaviors. Finally, we will add a specific color and position to our entity. If you now save your file and drag-and-drop it into the browser, you should see something like figure 2. Figure 2: A simple entity in Crafty.  Moving a box Now,let’s do something a bit more complex in Crafty. Let’s move the red box based on where we move our mouse, or if you have a touch-enabled device, where we touch the screen. To do this, open your index.html file and edit it so it looks like listing 2. Listing 2: Moving the box <!DOCTYPE html> <html> <head></head> <body> <div id="game"></div> <script type="text/javascript" src="lib/crafty.js"></script> <script> var WIDTH = 500, HEIGHT = 320; Crafty.init(WIDTH, HEIGHT); // Background Crafty.background("black"); //add mousetracking so block follows your mouse Crafty.e("mouseTracking, 2D, Mouse, Touch, Canvas") .attr({ w:500, h:320, x:0, y:0 }) .bind("MouseMove", function(e) { console.log("MouseDown:"+ Crafty.mousePos.x +", "+ Crafty.mousePos.y); // when you touch on the canvas redraw the player player.x = Crafty.mousePos.x; player.y = Crafty.mousePos.y; }); // Create the player entity var player = Crafty.e(); player.addComponent("2D, DOM"); //set where your player starts player.attr({ x : 10, y : 10, w : 50, h : 50 }); player.addComponent("Color").color("red"); </script> </body> </html> As you can see, there is a lot more going on in this listing. The first difference is that we are using Crafty.background to set the background to black, but we are also creating a new entity called mouseTracking that is the same size as the whole canvas. We assign several components to the entity so that it can inherit their methods and properties. We then use .bind to bind the mouse’s movements to our entity. Then, we tell Crafty to reposition our player entity to wherever the mouse’s x and y position is. So, if you save this code and run it, you will find that the red box will go wherever your mouse moves or wherever you touch or drag as in figure 3.    Figure 3: Controlling the movement of a box in Crafty.  Summary In this post, you learned about working with Crafty.js. Specifically, you learned how to work with the Crafty API and create entities. In Part 2, you will work with sprites, create components, and control entities via mouse/touch.  About the author Robi Sen, CSO at Department 13, is an experienced inventor, serial entrepreneur, and futurist whose dynamic twenty-plus-year career in technology, engineering, and research has led him to work on cutting edge projects for DARPA, TSWG, SOCOM, RRTO, NASA, DOE, and the DOD. Robi also has extensive experience in the commercial space, including the co-creation of several successful start-up companies. He has worked with companies such as UnderArmour, Sony, CISCO, IBM, and many others to help build new products and services. Robi specializes in bringing his unique vision and thought process to difficult and complex problems, allowing companies and organizations to find innovative solutions that they can rapidly operationalize or go to market with.
Read more
  • 0
  • 0
  • 4258
Banner background image
Unlock access to the largest independent learning library in Tech for FREE!
Get unlimited access to 7500+ expert-authored eBooks and video courses covering every tech area you can think of.
Renews at $19.99/month. Cancel anytime