Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon

BloombergGPT: Putting Finance to Work using Large Language Models

Save for later
  • 7 min read
  • 28 Jun 2023

article-image

In recent years, the financial industry has experienced a significant surge in the amount and complexity of data. This exponential growth has underscored the need for advanced artificial intelligence models capable of comprehending and processing the specialized language used in finance. Addressing this demand, Bloomberg unveiled BloombergGPT, a revolutionary language model trained on a diverse range of financial data.

The Rise of BloombergGPT

Released on March 30th, BloombergGPT represents a groundbreaking development in the financial sector's application of AI technology. By focusing specifically on finance-related tasks, BloombergGPT aims to enhance existing NLP applications employed by Bloomberg, including sentiment analysis, named entity recognition, news classification, and question answering. Furthermore, this sophisticated model holds the promise of unlocking new possibilities for leveraging the vast amounts of data accessible through the Bloomberg Terminal, thereby empowering the firm's customers and fully harnessing the potential of AI in the financial domain.

Unleashing the Power of BloombergGPT

BloombergGPT boasts two notable capabilities that propel it beyond generic language models. First, it possesses the ability to generate Bloomberg Query Language (BQL), which serves as a query language for accessing and analyzing financial data on the Bloomberg platform. BQL, a powerful and intricate tool, enables various financial tasks such as data searching, analysis, report creation, and insight generation. BloombergGPT's proficiency in transforming natural language queries into valid BQL fosters more intuitive interactions with financial data, streamlining the querying process and enhancing user experience.

The second noteworthy feature of BloombergGPT is its capability to provide suggestions for news headlines. This functionality proves invaluable for news applications and aids journalists in constructing compelling and informative newsletters. By inputting paragraphs, BloombergGPT can generate relevant and engaging titles, saving time and enhancing the efficiency of content creation.

Training BloombergGPT: A Domain-Specific Approach

To train BloombergGPT, Bloomberg employed a domain-specific approach, combining their own financial data with augmented online text data. This strategy demonstrates the value of developing language models tailored to specific industries, surpassing the utility of generic models. The training process involved building a dataset of English-language financial documents, incorporating 363 billion financial-specific tokens from Bloomberg's proprietary data assets and an additional 345 billion generic tokens from online text datasets, including The Pile, C4, and Wikipedia.

The resulting domain-specific language model, BloombergGPT, comprises an impressive 50 billion parameters and is optimized for financial tasks. Notably, BloombergGPT outperforms popular open-source language models such as GPT-NeoX, OPT, and Bloom in finance-specific tasks. Furthermore, it exhibits remarkable performance in generic language tasks, including summarization, often rivaling the performance of GPT-3 based on Bloomberg's benchmarks.

Applications and Advantages:

BloombergGPT's introduction opens up a wealth of possibilities for employing language models in the financial technology realm. One such application is sentiment analysis, which enables the assessment of sentiments in articles, particularly those related to individual companies. Automatic entity recognition is another area where BloombergGPT excels, offering the potential for streamlined data extraction and analysis. Additionally, the model is adept at answering financial questions, providing prompt and accurate responses to user inquiries.

Bloomberg's news division can leverage BloombergGPT to automatically generate compelling headlines for newsletters, reducing manual effort and improving efficiency. The model's capability to formulate queries in Bloomberg's proprietary query language (BQL) with minimal examples further augments its versatility. Users can interact with BloombergGPT using natural language, specifying their data requirements, and allowing the model to generate the appropriate BQL, expediting data extraction from databases.

Unlock access to the largest independent learning library in Tech for FREE!
Get unlimited access to 7500+ expert-authored eBooks and video courses covering every tech area you can think of.
Renews at €18.99/month. Cancel anytime

Shawn Edwards, Bloomberg's Chief Technology Officer, emphasizes the immense value of developing the first language model focused on the financial domain. The domain-specific approach not only allows for the creation of diverse applications but also yields superior performance compared to developing custom models for each specific task. This advantage, coupled with a faster time-to-market, positions BloombergGPT as a game-changer in the finance industry.

The Future of BloombergGPT:

BloombergGPT's potential extends beyond its current capabilities. As the model continues to train and optimize on financial data, further progress, and advancements are expected. Its application can be broadened to encompass a wider range of financial tasks, ultimately facilitating more accurate and efficient decision-making in the financial industry.

BloombergGPT represents a significant milestone in the advancement of financial natural language processing. By addressing the unique language intricacies of the financial industry, this domain-specific language model holds immense potential for revolutionizing how financial data is analyzed, queried, and leveraged. With its impressive 50 billion parameters and exceptional performance in financial NLP tasks, BloombergGPT positions itself as a powerful tool that will shape the future of the finance industry.

Use-cases

  • Automating research tasks: BloombergGPT is being used by researchers at the University of Oxford to automate the task of summarizing large medical datasets. This has allowed the researchers to save a significant amount of time and effort, and it has also allowed them to identify new insights that they would not have been able to find otherwise.
  • Creating content: BloombergGPT is being used by businesses such as Nike and Coca-Cola to create content for their websites and social media channels. This has allowed these businesses to produce high-quality content more quickly and easily, and it has also helped them to reach a wider audience.
  • Improving customer service: BloombergGPT is being used by customer service teams at companies such as Amazon and PayPal to provide customers with more personalized and informative responses. This has helped these companies to improve their customer satisfaction ratings.
  • Generating code: BloombergGPT is being used by developers at companies such as Google and Facebook to generate code for new applications. This has helped these developers to save time and effort, and it has also allowed them to create more complex and sophisticated applications.
  • Translating languages: BloombergGPT is being used by businesses such as Airbnb and Uber to translate their websites and apps into multiple languages. This has helped these businesses to expand into new markets and to reach a wider audience.

These are just a few examples of how BloombergGPT is being used in the real world. As it continues to develop, it is likely that even more use cases will be discovered.

Summary

In recent years, the financial industry has faced a surge in data complexity, necessitating advanced artificial intelligence models. BloombergGPT, a language model trained on financial data, represents a groundbreaking development in the application of AI in finance. It aims to enhance Bloomberg's NLP applications, providing improved sentiment analysis, named entity recognition, news classification, and question answering. Notably, BloombergGPT can generate Bloomberg Query Language (BQL) and suggest news headlines, streamlining financial data querying and content creation. By training the model on domain-specific data, BloombergGPT outperforms generic models and offers various applications, including sentiment analysis, entity recognition, and prompt financial question answering. With further advancements expected, BloombergGPT has the potential to revolutionize financial NLP, enabling more accurate decision-making. The model's versatility and superior performance position it as a game-changer in the finance industry, with applications ranging from automating research tasks to improving customer service and code generation.

Author Bio

Julian Melanson is one of the founders of Leap Year Learning. Leap Year Learning is a cutting-edge online school that specializes in teaching creative disciplines and integrating AI tools. We believe that creativity and AI are the keys to a successful future and our courses help equip students with the skills they need to succeed in a continuously evolving world. Our seasoned instructors bring real-world experience to the virtual classroom and our interactive lessons help students reinforce their learning with hands-on activities.

No matter your background, from beginners to experts, hobbyists to professionals, Leap Year Learning is here to bring in the future of creativity, productivity, and learning!