Understanding RAG – Basics and principles
Modern-day LLMs are impressive, but they have never seen your company’s private data (hopefully!). This means the ability of an LLM to help your company fully utilize its data is very limited. This very large barrier has given rise to the concept of RAG, where you are using the power and capabilities of the LLM but combining it with the knowledge and data contained within your company’s internal data repositories. This is the primary motivation for using RAG: to make new data available to the LLM and significantly increase the value you can extract from that data.
Beyond internal data, RAG is also useful in cases where the LLM has not been trained on the data, even if it is public, such as the most recent research papers or articles about a topic that is strategic to your company. In both cases, we are talking about data that was not present during the training of the LLM. You can have the latest LLM trained on the most...