Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Time Series Analysis with Python Cookbook

You're reading from   Time Series Analysis with Python Cookbook Practical recipes for exploratory data analysis, data preparation, forecasting, and model evaluation

Arrow left icon
Product type Paperback
Published in Apr 2025
Publisher
ISBN-13 9781805124283
Length 98 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Tarek A. Atwan Tarek A. Atwan
Author Profile Icon Tarek A. Atwan
Tarek A. Atwan
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

1. Time Series Analysis with Python Cookbook, Second Edition: Practical recipes for exploratory data analysis, data preparation, forecasting, and model evaluation FREE CHAPTER
2. Getting Started with Time Series Analysis 3. Reading Time Series Data from Files 4. Reading Time Series Data from Databases 5. Persisting Time Series Data to Files 6. Persisting Time Series Data to Databases 7. Working with Date and Time in Python 8. Handling Missing Data 9. Outlier Detection Using Statistical Methods 10. Exploratory Data Analysis and Diagnosis 11. Building Univariate Time Series Models Using Statistical Methods 12. Additional Statistical Modeling Techniques for Time Series 13. Outlier Detection Using Unsupervised Machine Learning

Detecting outliers using iForest

iForest has similarities with another popular algorithm known as Random Forests. Random Forests is a tree-based supervised learning algorithm. In supervised learning, you have existing labels (classification) or values (regression) representing the target variable. This is how the algorithm learns (it is supervised).

The name forest stems from the underlying mechanism of how the algorithm works. For example, in classification, the algorithm randomly samples the data to build multiple weak classifiers (smaller decision trees) that collectively make a prediction. In the end, you get a forest of smaller trees (models). This technique outperforms a single complex classifier that may overfit the data. Ensemble learning is the concept of multiple weak learners collaborating to produce an optimal solution.

iForest, also an ensemble learning method, is the unsupervised learning approach to Random Forests. The iForest algorithm isolates anomalies by randomly partitioning...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime