Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Supervised Learning Workshop

You're reading from   The Supervised Learning Workshop Predict outcomes from data by building your own powerful predictive models with machine learning in Python

Arrow left icon
Product type Paperback
Published in Feb 2020
Publisher Packt
ISBN-13 9781800209046
Length 532 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (4):
Arrow left icon
Blaine Bateman Blaine Bateman
Author Profile Icon Blaine Bateman
Blaine Bateman
Ashish Ranjan Jha Ashish Ranjan Jha
Author Profile Icon Ashish Ranjan Jha
Ashish Ranjan Jha
Ishita Mathur Ishita Mathur
Author Profile Icon Ishita Mathur
Ishita Mathur
Benjamin Johnston Benjamin Johnston
Author Profile Icon Benjamin Johnston
Benjamin Johnston
Arrow right icon
View More author details
Toc

Summary Statistics and Central Values

In order to find out what our data really looks like, we use a technique known as data profiling. This is defined as the process of examining the data available from an existing information source (for example, a database or a file) and collecting statistics or informative summaries about that data. The goal is to make sure that you understand your data well and are able to identify any challenges that the data may pose early on in the project, which is done by summarizing the dataset and assessing its structure, content, and quality.

Data profiling includes collecting descriptive statistics and data types. Common data profile commands include those you have seen previously, including data.describe(), data.head(), and data.tail(). You can also use data.info(), which tells you how many non-null values there are in each column, along with the data type of the values (non-numeric types are represented as object types).

Exercise 2.01: Summarizing...

You have been reading a chapter from
The Supervised Learning Workshop - Second Edition
Published in: Feb 2020
Publisher: Packt
ISBN-13: 9781800209046
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image