Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Statistics and Calculus with Python Workshop

You're reading from   The Statistics and Calculus with Python Workshop A comprehensive introduction to mathematics in Python for artificial intelligence applications

Arrow left icon
Product type Paperback
Published in Aug 2020
Publisher Packt
ISBN-13 9781800209763
Length 740 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (6):
Arrow left icon
Ajinkya Sudhir Kolhe Ajinkya Sudhir Kolhe
Author Profile Icon Ajinkya Sudhir Kolhe
Ajinkya Sudhir Kolhe
Quan Nguyen Quan Nguyen
Author Profile Icon Quan Nguyen
Quan Nguyen
Marios Tsatsos Marios Tsatsos
Author Profile Icon Marios Tsatsos
Marios Tsatsos
Alexander Joseph Sarver Alexander Joseph Sarver
Author Profile Icon Alexander Joseph Sarver
Alexander Joseph Sarver
Peter Farrell Peter Farrell
Author Profile Icon Peter Farrell
Peter Farrell
Alvaro Fuentes Alvaro Fuentes
Author Profile Icon Alvaro Fuentes
Alvaro Fuentes
+2 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface
1. Fundamentals of Python 2. Python's Main Tools for Statistics FREE CHAPTER 3. Python's Statistical Toolbox 4. Functions and Algebra with Python 5. More Mathematics with Python 6. Matrices and Markov Chains with Python 7. Doing Basic Statistics with Python 8. Foundational Probability Concepts and Their Applications 9. Intermediate Statistics with Python 10. Foundational Calculus with Python 11. More Calculus with Python 12. Intermediate Calculus with Python Appendix

Introduction

Calculus has been called the science of change, since its tools were developed to deal with constantly changing values such as the position and velocity of planets and projectiles. Previously, there was no way to express this kind of change in a variable.

The first important topic in calculus is the derivative. This is the rate of change of a function at a given point. Straight lines follow a simple pattern known as the slope. This is the change in the y value (the rise) over a given range of x values (the run):

Figure 10.1: Slope of a line

In Figure 10.1, the y value in the line increases by 2 units for every 1-unit increase in the x value, so we divide 2 by 1 to get a slope of 2.

However, the slope of a curve isn't constant over the whole curve like it is in a line. So, as you can see in Figure 10.2, the rate of change of this function at point A is different from the rate of change at point B:

Figure 10.2: Finding...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime