Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Simulation for Data Science with R
Simulation for Data Science with R

Simulation for Data Science with R: Effective Data-driven Decision Making

eBook
$9.99 $43.99
Paperback
$54.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Table of content icon View table of contents Preview book icon Preview Book

Simulation for Data Science with R

Chapter 1. Introduction

In the previous century, the Vienna University of Technology in Vienna enrolled a bachelor study called data engineering and statistics. Basically the content was perfectly related to the nowadays commonly-used term data science. Data-oriented lectures in the area of computer science, such as storing and retrieving data, programming, and data security, were in the curriculum, together with applied lectures on statistics, such as multivariate statistics, biostatistics, financial statistics, statistical learning, and official statistics. We had too few students and after a few years the course was canceled. 16 years later, the picture completely changed. New bachelors and masters courses on data science have been developed everywhere in the world over the last few years. Universities have found that they must offer studies on data science, because the industry needs experts on it, but also developments in statistics in recent years have almost exclusively come from an area called computational statistics. Statistics is the original form of computing data, and computational statistics takes this to an extreme where methods and tools are developed in a highly data-dependent manner, using and developing modern computational tools. Computational statistics and data science are closely related. Computational statistics covers a broad swathe of data science, exclusive data management, and data security issues. Computational statistics (and therefore also data science) has become very popular since the eighties, and it is very likely the most influential area of statistics nowadays. In the field of computational statistics, not only is new methodology developed, but it is also implemented in software – nowadays almost exclusively in the old but modern software environment R.

Data science seems like a good term when your work is driven by data with a less strong component on method and algorithm development than computational statistics, but with a lot of pure computer science topics related to storing, retrieving, and handling data sets. It also differs from computational statistics in various aspects. For example, in the area of data visualization also pure process-related visualizations (airflows in an engine, for example) are a topic in data science but not in computational statistics.

Wikipedia defines data science as a field that:

"incorporates varying elements and builds on techniques and theories from many fields, including math, statistics, data engineering, pattern recognition and learning, advanced computing, visualization, uncertainty modeling, data warehousing, and high performance computing with the goal of extracting meaning from data and creating data products."

Data science is the management of the entire modeling process, from data collection, storage and managing data, data pre-processing (editing, imputation), data analysis, and modeling, to automatized reporting and presenting the results, all in a reproducible manner. It is thus also an interdisciplinary study to extract meaning from data with statistics, by using a lot of elements in computer science, as well as general subject-matter skills. In that sense, data science is an extension and continuation of statistics. Data scientists use statistics and data-oriented computer science tools to solve the problems they face.

Statistical simulation is an essential area in data science. The core issues of this book are simulating distributions and data sets, Monte Carlo methods for inference statistics, and presenting solutions on computer-intense approaches. This book discusses various areas in statistical simulation, random number simulation, resampling, Monte Carlo methods, statistical theory explained by simulation experiments, agent-based microsimulation, and system dynamics. The aim is to put a book into the hands of readers that explains methods, gives advice on the use of those methods, and provides computational tools to solve common problems in statistical simulation and computer-intense methods.

In this book, the theory is not just explained. The theory is also made understandable with illustrative examples using the R software environment. The reader will get to grips with the R software environment. After getting the background on popular methods in the field, readers will see applications in R to better understand the methods, as well as to gain experience when working on real-world data and real-world problems.

R itself is perfectly suited to carry out simulations. It should be mentioned that the basics of R are not the topic of the book, but advanced data manipulation and advanced visualization tools are shown in R. The reader should therefore not be a complete newbie in R, and if so, should first read a very basic introduction to R.

Readers will get a brief overview of the problems and possibilities of data-driven simulation and resampling methods.

What is simulation and where is it applied?

Statistical simulation is a numerical method for conducting experiments on a computer in order to solve mathematical problems in a data-driven manner.

Each experiment is carried out in two steps:

  1. Drawing a random outcome.
  2. The subsequent application of an estimation function to the drawn data.

Random draws are made by means of simulating random numbers, such as the numbers produced by a chosen random number generator.

Simulation is applied in different ways. It is applied in sampling to gather information about a random object by observing many realizations of it (Kroese et al., 2014).

As computational power keeps increasing, and new methods and algorithms are being developed, opportunities present themselves to not only conduct innovative research, but also to design better social and economic policies and programs through micro-simulation and agent-based modeling, where states change over time according to defined transition probabilities. Another example is the area of system dynamics, which describes the interaction of populations or individuals. Both topics are part of Chapter 11, System Dynamics and Agent-Based Models.

With simulation experiments, one can even show the concepts of probability theory and the basic theorems of statistics. The (weak and strong) law of large numbers can be explained. We may repeatedly do some experiments with related probability mechanisms. The outcomes of these experiments are random – random events have outcomes that are not known with certainty, but in the long run we know the properties. To toss coins is the simplest example. The most fundamental theorem in mathematical statistics, the central limit theorem, can also be shown by simulation. Using simulation experiments, readers will be able to fully understand this important theorem, while the proof with mathematics needs very detailed knowledge of mass and probability theory. More information on simulation to show the basics in statistics is provided in Chapter 6, Probability Theory Shown by Simulation.

Statistical simulation is also used to show the properties of an estimation method regarding different conditions. One example is the question of how an estimator behaves under different kinds of missing values pattern, or how outliers may corrupt the estimator. When samples have been drawn with complex sampling designs from finite populations, the influence of the sampling design on the estimator of interest can be shown with design-based simulations. Both model-based simulation and design-based simulation are shown in Chapter 10, Simulation with Complex Data. How data might be simulated for different kind of problems is also discussed. This covers the high-dimensional data and complex synthetic populations needed for design-based simulations.

Usually, when statisticians talk about simulations, they mean Monte Carlo simulations. The Monte Carlo simulation method uses repeated random sampling to mimic the null hypothesis or simulate data from a model where an estimation function is applied to the simulated data.

The Monte Carlo simulation approach is also essential in Bayesian statistics, where Markov chain Monte Carlo (MCMC) methods are used to sample parameter values from a posterior distribution (see also Kroese et al., 2014). This will be intensively discussed in Chapter 4, Simulation of Random Numbers. Generally, it is crucial to have an excellent random number generator at hand that allows you to simulate uniformly distributed values. Additionally, it is crucial to transform a uniform distribution into a distribution of interest. We can do this with inversion, rejection sampling, or MCMC methods; see also Chapter 4, Simulation of Random Numbers.

The Monte Carlo simulation approach is also central to estimating certain numerical quantities in general, but especially to estimate statistical uncertainty. It turns out (Chapter 6, Probability Theory Shown by Simulation) that almost no mathematics is used to express the statistical uncertainty for any complex estimator. The Monte Carlo simulation method is a data-driven and computational tool. It is the perfect tool for data scientists to make statistical inferences without getting lost in the world of mathematics.

Another application of Monte Carlo simulation is multi-dimensional integrals, which can be solved via Monte Carlo techniques, typically by drawing random numbers out of an interval at which the integral is defined. Closely related to this is numerical optimization. Here, the Monte Carlo approach can be used to first solve optimization problems with complicated objective functions using a stochastic approach. The aim to introduce randomness is to avoid to converge / trap into a local optima when searching for an optima in non-convex (or non-concave) optimization functions, (more on this in Chapter 5, Monte Carlo Methods for Optimization Problems).

The great thing about Monte Carlo simulation is that the procedure is simple, independent of the complexity of the estimator/estimation of interest. Doing even the most complicated Monte Carlo simulation can be broken down into simple steps:

  1. Identify a mathematical model – the estimation you want to apply.
  2. Define the parameters in your model.
  3. Create random data according to those parameters. Typically, we generate independent data sets under the conditions of interest.
  4. Simulate and analyze the output of your estimations. This is typically done by computing the numerical value of the estimator/test statistic. On the original data, this should be T(X). For each simulated data set we get What is simulation and where is it applied?, that is, the numerical values of the estimator for each simulated data. If is large enough, the distribution of What is simulation and where is it applied? gives a good approximation of the true sampling distribution of the estimator/test. Moreover, the sample mean of the estimates is an estimate of the true mean. The 0,025 and 0,975 quantiles of this distribution is an estimator of the confidence interval of the point estimate from T(X).

Generally speaking, with Monte Carlo simulation we approximate the sampling distribution of an estimator or test statistic. The particular set of related conditions are usually parameters fitted from the original data and conditions from a null hypothesis. With Monte Carlo simulations, we can successfully express the statistical uncertainty of an estimator or receive the relevant values (for example, the p-value) of a hypothesis test.

Why use simulation?

Simulation can save huge amounts of time and provides very accurate answers to our questions.

Statistical inference is often handled by asymptotic normal theory, which may provide formulas for the standard errors that allow us to construct confidence intervals around point estimates. For the simple case of the simple estimator of the arithmetic mean, we can immediately choose the formula Why use simulation? for an observational vector x with n values, the arithmetic Why use simulation? and s being the standard deviation of x. However, this formula to express the confidence interval for the arithmetic mean is only true for independent identical distributed samples, sampled with simple random sampling from a population. However, in many situations the (asymptotic) distribution of the parameter of interest might not be known, and often we do not have the expertise to derive even an approximation of a formula to express the standard error of an estimator of interest. For example, this might be true for the Huber mean (Huber 1981) from data sampled with a multi-stage cluster sampling design. In other words, if the quantity of interest is a very complex function of the data or if the data is of a very complex nature, we may be able to benefit substantially from the use of a Monte Carlo simulation. Even when a formula may exist in the statistical literature to express the confidence interval, we might not be aware of it.

A very prominent resampling method is the bootstrap, intensively discussed in Chapter 7, Resampling Methods. In this approach, the sampling distribution of the parameter estimate is simulated by repeated sampling with replacement from the current data, and re-computing parameter estimates from each sampled data set. The distribution of these estimations expresses the variability of the estimation, thus this distribution can be used to express confidence intervals.

The approach is very similar for hypothesis tests. The distribution of the test statistics is not always known for a test. With the Monte Carlo approach to testing, data is simulated in a way that it mimics the null hypothesis, and parameters for data generation are used from the empirical data. The test statistic is calculated on the data and compared to the repeatedly simulated data. It's then a straightforward topic in Chapter 8, Applications of Resampling Methods and Monte Carlo Tests, Monte Carlo Tests) to receive a p-value for the test.

Simulation and big data

Big unstructured data is often analyzed nowadays, or used as auxiliary information. Running simulations on big data is a challenge.

Big data can be too large to fit in the memory of a desktop computer. Whenever this happens, basically three options are available to choose from. The first option is to just use a more powerful server with a larger amount of memory for your computations. Second, the data can also be stored efficiently in a database and we connect to the database for analysis. Typically, only a subset of the data is of interest, so we can just grab the interesting parts of the database, import it to R, do the analysis, and export the results back to the database. Since R has excellent features and APIs for connecting to well-known databases, this is the recommended approach. Third, aggregate and subset your data first. It is likely that you don't need such detailed information for your analysis. To give an example, imagine you want to analyze road traffic data. The measurement units on a highway usually report the speed, the distance to the next car, the lane used, and the kind of vehicle. If this is so, the data will be really huge. However, for an analysis of measurement faults, it is enough to aggregate the data and analyze 1- or 5-minute interval data.

As soon as the data sets become large, resampling methods such as the Bootstrap might cause long computation times. The usual method is to repeatedly sample data, estimate the statistic of interest, and save the results. Whenever simulations can be rerun under different settings, one may change this approach. For a method such as the Bootstrap, an additional vector can be stored for each Bootstrap sample containing information about how often a sample is included in a Bootstrap sample. Thus, instead of storing the Bootstrap sample, we store a vector of 0,1,... that expresses whether a unit is included (and how often) in a Bootstrap sample. With this approach, Bootstrap samples must only be selected ones. This approach is especially useful when the Bootstrap sample selection is of a more complex nature because of special sampling designs, and simulations should be re-run again.

If estimations are done repeatedly, as in the Monte Carlo approach, it is very important to have fast implementations of the estimators in the software available. It is recommended to run everything vectorized, meaning that any function call applied to a vector or any other data structure operates directly on all of its values/elements. It is then crucial that this loop is implemented in a compiled language such as C or C++, as is the case with more elementary functions of base R. R provides a powerful interface to foreign languages. The use of foreign languages is often much more efficient than using non-compiled, interpreted R language directly. Appropriately implemented apply-like functions over vectors, matrices, or data frames can even be very simply parallelized. The trick is then just to use, for example, instead of an lapply, the call mclapply from the R package parallel (R Core Team 2015).

Resampling methods can be easily run on parallel processes. Monte Carlo techniques were originally designed for machines with a single processor. With today's high performance computing possibilities, the calculation can often be done by the use of many processors running in parallel (Kroese et al., 2014). Monte Carlo techniques perform efficiently in the parallel processing framework. In R, for example, only very few modifications are needed to run a Monte Carlo approach in parallel. However, when data sets get large, parallel computing might only be faster than single-core computing in Linux or OS X operating systems, since both support forking, while Microsoft Windows does not support this to the same extent.

A related issue is the use of effective random number generation techniques for parallel computing. It must be ensured that the random numbers used by separate workers are produced independently, otherwise the workers will return the same results. To facilitate reproducible research, it is thus necessary to provide different initializations of random numbers to all workers (see also Schmidberger et al., 2009). For example, the package rlecuyer (Sevcikova and Rossini 2015) supports these issues.

Choosing the right simulation technique

The bad news is that there is no general guidance and no general method for simulation. The choice of the right simulation technique rather depends on the underlying problem, data set, and the aim of the study.

We already mentioned in which areas simulation plays a role. Depending on the area of interest, different techniques are considered. For a Bayesian analysis, the methods differ between general inference statistics using resampling techniques, and when optimization comes into the topic. The methods change completely when interaction of populations or individuals are in focus, or when predictions about the future on an individual level (micro-simulation) are required.

However, some general questions may give a little guidance for choosing the right technique. This is illustrated in Table 1.1. Of course, it is often the case that a clear decision cannot be made. For example, if you work with a sample, optimization techniques might be used for several reasons, but the main aim of optimization is more general. It can be applied to samples or population data. Another example includes, for example, in agent-based microsimulation of course one can compare models, but it's not the main aim. Thus this table should give only a very rough categorization of methods for basic questions. It should be clear that optimization methods, methods for system dynamics, and agent-based micro-simulation techniques may differ to the methods that are developed to express the uncertainty of estimators, such as resampling methods.

The following table describes choosing the right simulation technique, Monte Carlo (MC) techniques, and resampling techniques; Markov chain Monte Carlo (MCMC) methods; MC test Monte Carlo techniques applied to hypothesis testing, optimization (O), system dynamics (SD), agent-based modeling (ABM), design-based simulation (DBS), and model-based simulation (MBS):

Question

Yes

No

Do you work with a sample?

MC, MC test, MBS, DBS

ABM, SD

Is variability/randomness important?

MC, MC test, MBS, DBS

ABM, SD

Is the number of observations large?

ABM

SD, MCMC

Do you apply a hypothesis test?

MC test

ABM, DBS, SD, Opt

Is the sample drawn from a finite population?

DBS

MBS

Do you work with a population?

ABM, Opt, SD

MC, MC test

Do you want to compare models?

MC

ABM, SD, Opt

Do you apply Bayesian statistics?

MCMC

SD, Opt

Do you need to simulate certain distributions?

RN, MCMC

SD, Opt

Is probability theory a main issue?

ABM, MCMC

MC, MBS, DBS

Has something to be optimized?

Opt

MC, MC test, MBS

Dynamic rules of behavior within individuals.

SD, ABM

All others

Do changes to the system happen over time?

SD

All others

Can the time-frame of interest be long?

ABM, SD

All others

Please enjoy all the chapters mentioned, simulate a cozy burning fire with R's package animation (Yihui 2013) in Figure 1.1, and start to explore all the different issues in Simulation for Data Science with R:

Choosing the right simulation technique

Figure 1.1: Snapshot of a simulated burning fire for your coziness

To run the burning fire simulation, have a look at the code on this website: http://yihui.name/en/2009/06/simulation-of-burning-fire-in-r/.

Summary

Simulation experiments are mostly data-dependent and thus perfectly suited for a data scientist. Different kinds of simulation techniques have been mentioned in this chapter. They are discussed in detail in the next chapters. We mentioned that simulation can be applied almost everywhere to show the properties and performance of methods, to make predictions, and to assess statistical uncertainty. We learned that no general approach exists and that quite different methods exist for different tasks, data sets, and problems. It's up to the data scientist and statistician to choose the right simulation approach.

Whenever computational power is an issue, remember that almost any simulation can be run in a parallel manner, and modern software is ready for this task.

In practice, one should not ask the question "Why did you use simulation?" to somebody who has applied simulation techniques, but rather "Why didn't you use simulation?" to somebody who did not.

References

  • Eddelbuettel, D., and R. François. 2011, "Rcpp: Seamless R and C++ Integration." Journal of Statistical Software 40 (8): 1–18.
  • Huber, P.J. 1981, Robust Statistics, Wiley.
  • Kroese, D.P., T. Brereton, T. Taimre, and Z.I. Botev. 2014. "Why the Monte Carlo Method is so important today," Wiley Interdisciplinary Reviews: Computational Statistics 6 (6). John Wiley & Sons, Inc.: 386–92.
  • R Core Team. 2015. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
  • Schmidberger, S., M. Morgan, D. Eddelbuettel, H. Yu, L. Tierney, and U. Mansmann. 2009, "State of the Art in Parallel Computing with R," Journal of Statistical Software 31 (1).
  • Sevcikova, H., and T. Rossini. 2015. Rlecuyer: R Interface to RNG with Multiple Streams, https://CRAN.R-project.org/package=rlecuyer.
  • Yihui, X. 2013. "Animation: An R Package for Creating Animations and Demonstrating Statistical Methods," Journal of Statistical Software 53 (1): 1–27.
Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Learn five different simulation techniques (Monte Carlo, Discrete Event Simulation, System Dynamics, Agent-Based Modeling, and Resampling) in-depth using real-world case studies
  • A unique book that teaches you the essential and fundamental concepts in statistical modeling and simulation

Description

Data Science with R aims to teach you how to begin performing data science tasks by taking advantage of Rs powerful ecosystem of packages. R being the most widely used programming language when used with data science can be a powerful combination to solve complexities involved with varied data sets in the real world. The book will provide a computational and methodological framework for statistical simulation to the users. Through this book, you will get in grips with the software environment R. After getting to know the background of popular methods in the area of computational statistics, you will see some applications in R to better understand the methods as well as gaining experience of working with real-world data and real-world problems. This book helps uncover the large-scale patterns in complex systems where interdependencies and variation are critical. An effective simulation is driven by data generating processes that accurately reflect real physical populations. You will learn how to plan and structure a simulation project to aid in the decision-making process as well as the presentation of results. By the end of this book, you reader will get in touch with the software environment R. After getting background on popular methods in the area, you will see applications in R to better understand the methods as well as to gain experience when working on real-world data and real-world problems.

Who is this book for?

This book is for users who are familiar with computational methods. If you want to learn about the advanced features of R, including the computer-intense Monte-Carlo methods as well as computational tools for statistical simulation, then this book is for you. Good knowledge of R programming is assumed/required.

What you will learn

  • The book aims to explore advanced R features to simulate data to extract insights from your data.
  • Get to know the advanced features of R including high-performance computing and advanced data manipulation
  • See random number simulation used to simulate distributions, data sets, and populations
  • Simulate close-to-reality populations as the basis for agent-based micro-, model- and design-based simulations
  • Applications to design statistical solutions with R for solving scientific and real world problems
  • Comprehensive coverage of several R statistical packages like boot, simPop, VIM, data.table, dplyr, parallel, StatDA, simecol, simecolModels, deSolve and many more.
Estimated delivery fee Deliver to Malaysia

Standard delivery 10 - 13 business days

$8.95

Premium delivery 5 - 8 business days

$45.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jun 30, 2016
Length: 398 pages
Edition : 1st
Language : English
ISBN-13 : 9781785881169
Category :
Languages :
Concepts :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Estimated delivery fee Deliver to Malaysia

Standard delivery 10 - 13 business days

$8.95

Premium delivery 5 - 8 business days

$45.95
(Includes tracking information)

Product Details

Publication date : Jun 30, 2016
Length: 398 pages
Edition : 1st
Language : English
ISBN-13 : 9781785881169
Category :
Languages :
Concepts :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 154.97
Simulation for Data Science with R
$54.99
Big Data Analytics with R
$60.99
Learning Probabilistic Graphical Models in R
$38.99
Total $ 154.97 Stars icon
Banner background image

Table of Contents

12 Chapters
1. Introduction Chevron down icon Chevron up icon
2. R and High-Performance Computing Chevron down icon Chevron up icon
3. The Discrepancy between Pencil-Driven Theory and Data-Driven Computational Solutions Chevron down icon Chevron up icon
4. Simulation of Random Numbers Chevron down icon Chevron up icon
5. Monte Carlo Methods for Optimization Problems Chevron down icon Chevron up icon
6. Probability Theory Shown by Simulation Chevron down icon Chevron up icon
7. Resampling Methods Chevron down icon Chevron up icon
8. Applications of Resampling Methods and Monte Carlo Tests Chevron down icon Chevron up icon
9. The EM Algorithm Chevron down icon Chevron up icon
10. Simulation with Complex Data Chevron down icon Chevron up icon
11. System Dynamics and Agent-Based Models Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.2
(5 Ratings)
5 star 80%
4 star 0%
3 star 0%
2 star 0%
1 star 20%
Roland R. Wieser Jul 21, 2016
Full star icon Full star icon Full star icon Full star icon Full star icon 5
For many years I teach students in Statistics (with R).This book is great for self-study. It is unique from content and has a high educational value. I was ever searching for a book that teaches Comutational Statistics (with R) so practical and elementary.You can feel while reading that the author is an experienced educator and scientist. I can fully recommend this book. It should be in the library of any statistician.
Amazon Verified review Amazon
Duncan W. Robinson Sep 06, 2016
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Simulation for Data Science with R successfully fills an area of data science that has not traditionally had much coverage other than snippets here in there in broader texts. It shows the reader how to use resampling methods, perform hypothesis testing via bootstrap, demonstrate probability theory using simulation & use Monte Carlo methods for optimization. The theory is fairly concisely explained, the code is plentiful & the potential uses are vast. I highly recommend this book!
Amazon Verified review Amazon
Barbara Szabo Sep 21, 2016
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The book has great strategy, because it introduces various topics by humorous examples, which are easy to be understood and than goes to details of the scientific background of computational statistics and simulations.The reader can1) learn more about the advanced features of R (all examples listed in the book, can be downloaded as code files),2) get advices on choosing the right technique applied for simulation, resampling or hypothesis testing,3) easily understand computer-intense methods and tools applied in statistical simulation via memorable examples,4) gain experience when working on real-world dataIf you are still not convinced from the advantages of this book, let me give you more details about it.It covers the main issues you can face with, when you need a computational and methodological framework for statistical simulation. The topics include simulating distributions and datasets, Monte Carlo methods for inference statistics, microsimulation and dynamical systems, furthermore it present solutions using computer-intense approaches.The author gave unique, excellent examples to increase our interest in scientific methods supported by R codes. The system dynamics for instance explained via the love/hate story of Prince Harry and Chelsy Davy, the optimization problem is introduced via the case of an Australian guy who trying to climb to the highest Austrian mountain and so on.Overall this is an excellent book written in a unique style for readers who look for data-driven solutions in simulation with R.
Amazon Verified review Amazon
Amazon Customer Oct 06, 2016
Full star icon Full star icon Full star icon Full star icon Full star icon 5
In my studies of mathematics I have always looked for a book describing the complex field of data simulation understandably and with this book I have finally found what I was hoping for: simulatiion methods are described very neat and as a lot of R code is provided I can easily realise described methods in my job as statistician.
Amazon Verified review Amazon
Steve Miller Jan 12, 2019
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
not a good book. returned.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela