Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Natural Language Processing

You're reading from   Python Natural Language Processing Advanced machine learning and deep learning techniques for natural language processing

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781787121423
Length 486 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Jalaj Thanaki Jalaj Thanaki
Author Profile Icon Jalaj Thanaki
Jalaj Thanaki
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Introduction FREE CHAPTER 2. Practical Understanding of a Corpus and Dataset 3. Understanding the Structure of a Sentences 4. Preprocessing 5. Feature Engineering and NLP Algorithms 6. Advanced Feature Engineering and NLP Algorithms 7. Rule-Based System for NLP 8. Machine Learning for NLP Problems 9. Deep Learning for NLU and NLG Problems 10. Advanced Tools 11. How to Improve Your NLP Skills 12. Installation Guide

Summary

In this chapter, we have seen all the details related to the rule-based system and how the rule-based approach helps us to develop rapid prototypes for complex problems with high accuracy. We have seen the architecture of the rule-based system. We have learned about the advantages, disadvantages, and challenges for the rule-based system. We have seen how this system is helpful to us for developing NLP applications such as grammar correction systems, chatbots, and so on. We have also discussed the recent trends for the rule-based system.

In the next chapter, we will learn the other main approaches called machine learning, to solve NLP applications. The upcoming chapter will give you all the details about which machine learning algorithms you need to use for developing NLP applications. We will see supervised ML, semi-supervised ML, and unsupervised ML techniques. We will...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image