Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Automated Machine Learning Using H2O.ai

You're reading from   Practical Automated Machine Learning Using H2O.ai Discover the power of automated machine learning, from experimentation through to deployment to production

Arrow left icon
Product type Paperback
Published in Sep 2022
Publisher Packt
ISBN-13 9781801074520
Length 396 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Salil Ajgaonkar Salil Ajgaonkar
Author Profile Icon Salil Ajgaonkar
Salil Ajgaonkar
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Part 1 H2O AutoML Basics
2. Chapter 1: Understanding H2O AutoML Basics FREE CHAPTER 3. Chapter 2: Working with H2O Flow (H2O’s Web UI) 4. Part 2 H2O AutoML Deep Dive
5. Chapter 3: Understanding Data Processing 6. Chapter 4: Understanding H2O AutoML Architecture and Training 7. Chapter 5: Understanding AutoML Algorithms 8. Chapter 6: Understanding H2O AutoML Leaderboard and Other Performance Metrics 9. Chapter 7: Working with Model Explainability 10. Part 3 H2O AutoML Advanced Implementation and Productization
11. Chapter 8: Exploring Optional Parameters for H2O AutoML 12. Chapter 9: Exploring Miscellaneous Features in H2O AutoML 13. Chapter 10: Working with Plain Old Java Objects (POJOs) 14. Chapter 11: Working with Model Object, Optimized (MOJO) 15. Chapter 12: Working with H2O AutoML and Apache Spark 16. Chapter 13: Using H2O AutoML with Other Technologies 17. Index 18. Other Books You May Enjoy

Conventions used

There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “The only dependency on using POJO models is the h2o-genmodel.jar file.”

A block of code is set as follows:

import h2o
h2o.init()

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

data_frame = h2o.import_file("Dataset/iris.data")

Any command-line input or output is written as follows:

mkdir H2O_POJO
cd H2O_POJO 

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “You can simply click the Download POJO button to download the model as a POJO.”

Tips or Important Notes

Appear like this.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image