Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Automated Machine Learning Using H2O.ai

You're reading from   Practical Automated Machine Learning Using H2O.ai Discover the power of automated machine learning, from experimentation through to deployment to production

Arrow left icon
Product type Paperback
Published in Sep 2022
Publisher Packt
ISBN-13 9781801074520
Length 396 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Salil Ajgaonkar Salil Ajgaonkar
Author Profile Icon Salil Ajgaonkar
Salil Ajgaonkar
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Part 1 H2O AutoML Basics
2. Chapter 1: Understanding H2O AutoML Basics FREE CHAPTER 3. Chapter 2: Working with H2O Flow (H2O’s Web UI) 4. Part 2 H2O AutoML Deep Dive
5. Chapter 3: Understanding Data Processing 6. Chapter 4: Understanding H2O AutoML Architecture and Training 7. Chapter 5: Understanding AutoML Algorithms 8. Chapter 6: Understanding H2O AutoML Leaderboard and Other Performance Metrics 9. Chapter 7: Working with Model Explainability 10. Part 3 H2O AutoML Advanced Implementation and Productization
11. Chapter 8: Exploring Optional Parameters for H2O AutoML 12. Chapter 9: Exploring Miscellaneous Features in H2O AutoML 13. Chapter 10: Working with Plain Old Java Objects (POJOs) 14. Chapter 11: Working with Model Object, Optimized (MOJO) 15. Chapter 12: Working with H2O AutoML and Apache Spark 16. Chapter 13: Using H2O AutoML with Other Technologies 17. Index 18. Other Books You May Enjoy

Summary

In this chapter, we understood some of the miscellaneous features of H2O AutoML. We started by understanding the scikit-learn library and getting an idea of its implementation. Then, we saw how we can use the H2OAutoMLClassifier library and the H2OAutoMLRegressor library in a scikit-learn implementation to train AutoML models.

Then, we explored H2O AutoML’s logging system. After that, we implemented a simple experiment where we triggered AutoML training; once it was finished, we extracted the event logs and the training logs in both the Python and R programming languages. Then, we understood the contents of those logs and how that information benefits us in keeping an eye on H2O AutoML functionality.

In the next chapter, we shall further focus on using H2O in production and how we can do so using H2O’s Model Object Optimized.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image