The Node.js philosophy
Every platform has its own philosophy—a set of principles and guidelines that are generally accepted by the community, an ideology of doing things that influences the evolution of a platform, and how applications are developed and designed. Some of these principles arise from the technology itself, some of them are enabled by its ecosystem, some are just trends in the community, and others are evolutions of different ideologies. In Node.js, some of these principles come directly from its creator, Ryan Dahl, from all the people who contributed to the core, from charismatic figures in the community, and some of the principles are inherited from the JavaScript culture or are influenced by the Unix philosophy.
None of these rules are imposed and they should always be applied with common sense; however, they can prove to be tremendously useful when we are looking for a source of inspiration while designing our programs.
Note
You can find an extensive list of software development philosophies in Wikipedia at http://en.wikipedia.org/wiki/List_of_software_development_philosophies.
Small core
The Node.js core itself has its foundations built on a few principles; one of these is, having the smallest set of functionality, leaving the rest to the so-called userland (or userspace), the ecosystem of modules living outside the core. This principle has an enormous impact on the Node.js culture, as it gives freedom to the community to experiment and iterate fast on a broader set of solutions within the scope of the userland modules, instead of being imposed with one slowly evolving solution that is built into the more tightly controlled and stable core. Keeping the core set of functionality to the bare minimum then, not only becomes convenient in terms of maintainability, but also in terms of the positive cultural impact that it brings on the evolution of the entire ecosystem.
Small modules
Node.js uses the concept of module as a fundamental mean to structure the code of a program. It is the brick for creating applications and reusable libraries called packages (a package is also frequently referred to as just module; since, usually it has one single module as an entry point). In Node.js, one of the most evangelized principles is to design small modules, not only in terms of code size, but most importantly in terms of scope.
This principle has its roots in the Unix philosophy, particularly in two of its precepts, which are as follows:
"Small is beautiful."
"Make each program do one thing well."
Node.js brought these concepts to a whole new level. Along with the help of npm
, the official package manager, Node.js helps solving the dependency hell problem by making sure that each installed package will have its own separate set of dependencies, thus enabling a program to depend on a lot of packages without incurring in conflicts. The Node way, in fact, involves extreme levels of reusability, whereby applications are composed of a high number of small, well-focused dependencies. While this can be considered unpractical or even totally unfeasible in other platforms, in Node.js this practice is encouraged. As a consequence, it is not rare to find npm packages containing less than 100 lines of code or exposing only one single function.
Besides the clear advantage in terms of reusability, a small module is also considered to be the following:
Easier to understand and use
Simpler to test and maintain
Perfect to share with the browser
Having smaller and more focused modules empowers everyone to share or reuse even the smallest piece of code; it's the Don't Repeat Yourself (DRY) principle applied at a whole new level.
Small surface area
In addition to being small in size and scope, Node.js modules usually also have the characteristic of exposing only a minimal set of functionality. The main advantage here is an increased usability of the API, which means that the API becomes clearer to use and is less exposed to erroneous usage. Most of the time, in fact, the user of a component is interested only in a very limited and focused set of features, without the need to extend its functionality or tap into more advanced aspects.
In Node.js, a very common pattern for defining modules is to expose only one piece of functionality, such as a function or a constructor, while letting more advanced aspects or secondary features become properties of the exported function or constructor. This helps the user to identify what is important and what is secondary. It is not rare to find modules that expose only one function and nothing else, for the simple fact that it provides a single, unmistakably clear entry point.
Another characteristic of many Node.js modules is the fact that they are created to be used rather than extended. Locking down the internals of a module by forbidding any possibility of an extension might sound inflexible, but it actually has the advantage of reducing the use cases, simplifying its implementation, facilitating its maintenance, and increasing its usability.
Simplicity and pragmatism
Have you ever heard of the Keep It Simple, Stupid (KISS) principle? Or the famous quote:
"Simplicity is the ultimate sophistication." | ||
-- Leonardo da Vinci |
Richard P. Gabriel, a prominent computer scientist coined the term worse is better to describe the model, whereby less and simpler functionality is a good design choice for software. In his essay, The rise of worse is better, he says:
"The design must be simple, both in implementation and interface. It is more important for the implementation to be simple than the interface. Simplicity is the most important consideration in a design."
Designing a simple, as opposed to a perfect, feature-full software, is a good practice for several reasons: it takes less effort to implement, allows faster shipping with less resources, is easier to adapt, and is easier to maintain and understand. These factors foster the community contributions and allow the software itself to grow and improve.
In Node.js, this principle is also enabled by JavaScript, which is a very pragmatic language. It's not rare, in fact, to see simple functions, closures, and object literals replacing complex class hierarchies. Pure object-oriented designs often try to replicate the real world using the mathematical terms of a computer system without considering the imperfection and the complexity of the real world itself. The truth is that our software is always an approximation of the reality and we would probably have more success in trying to get something working sooner and with reasonable complexity, instead of trying to create a near-perfect software with a huge effort and tons of code to maintain.
Throughout this book, we will see this principle in action many times. For example, a considerable number of traditional design patterns, such as Singleton or Decorator can have a trivial, even if sometimes not foolproof implementation and we will see how an uncomplicated, practical approach most of the time is preferred to a pure, flawless design.