Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Spark for Data Science

You're reading from   Mastering Spark for Data Science Lightning fast and scalable data science solutions

Arrow left icon
Product type Paperback
Published in Mar 2017
Publisher Packt
ISBN-13 9781785882142
Length 560 pages
Edition 1st Edition
Arrow right icon
Authors (5):
Arrow left icon
David George David George
Author Profile Icon David George
David George
Matthew Hallett Matthew Hallett
Author Profile Icon Matthew Hallett
Matthew Hallett
Antoine Amend Antoine Amend
Author Profile Icon Antoine Amend
Antoine Amend
Andrew Morgan Andrew Morgan
Author Profile Icon Andrew Morgan
Andrew Morgan
Albert Bifet Albert Bifet
Author Profile Icon Albert Bifet
Albert Bifet
+1 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. The Big Data Science Ecosystem 2. Data Acquisition FREE CHAPTER 3. Input Formats and Schema 4. Exploratory Data Analysis 5. Spark for Geographic Analysis 6. Scraping Link-Based External Data 7. Building Communities 8. Building a Recommendation System 9. News Dictionary and Real-Time Tagging System 10. Story De-duplication and Mutation 11. Anomaly Detection on Sentiment Analysis 12. TrendCalculus 13. Secure Data 14. Scalable Algorithms

Chapter 2. Data Acquisition

As a data scientist, one of the most important tasks is to load data into your data science platform. Rather than having uncontrolled, ad hoc processes, this chapter explains how a general data ingestion pipeline in Spark can be constructed that serves as a reusable component across many feeds of input data. We walk through a configuration and demonstrate how it delivers vital feed management information under a variety of running conditions.

Readers will learn how to construct a content register and use it to track all input loaded to the system and to deliver metrics on ingestion pipelines, so that these flows can be reliably run as an automated, lights-out process.

In this chapter, we will cover the following topics:

  • Introduce the Global Database of Events, Language, and Tone (GDELT) dataset
  • Data pipelines
  • Universal ingestion framework
  • Real-time monitoring for new data
  • Receiving streaming data via Kafka
  • Registering new content and vaulting for tracking purposes...
You have been reading a chapter from
Mastering Spark for Data Science
Published in: Mar 2017
Publisher: Packt
ISBN-13: 9781785882142
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime