Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Reinforcement Learning with Python

You're reading from   Mastering Reinforcement Learning with Python Build next-generation, self-learning models using reinforcement learning techniques and best practices

Arrow left icon
Product type Paperback
Published in Dec 2020
Publisher Packt
ISBN-13 9781838644147
Length 544 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Enes Bilgin Enes Bilgin
Author Profile Icon Enes Bilgin
Enes Bilgin
Arrow right icon
View More author details
Toc

Table of Contents (24) Chapters Close

Preface 1. Section 1: Reinforcement Learning Foundations
2. Chapter 1: Introduction to Reinforcement Learning FREE CHAPTER 3. Chapter 2: Multi-Armed Bandits 4. Chapter 3: Contextual Bandits 5. Chapter 4: Makings of a Markov Decision Process 6. Chapter 5: Solving the Reinforcement Learning Problem 7. Section 2: Deep Reinforcement Learning
8. Chapter 6: Deep Q-Learning at Scale 9. Chapter 7: Policy-Based Methods 10. Chapter 8: Model-Based Methods 11. Chapter 9: Multi-Agent Reinforcement Learning 12. Section 3: Advanced Topics in RL
13. Chapter 10: Introducing Machine Teaching 14. Chapter 11: Achieving Generalization and Overcoming Partial Observability 15. Chapter 12: Meta-Reinforcement Learning 16. Chapter 13: Exploring Advanced Topics 17. Section 4: Applications of RL
18. Chapter 14: Solving Robot Learning 19. Chapter 15: Supply Chain Management 20. Chapter 16: Personalization, Marketing, and Finance 21. Chapter 17: Smart City and Cybersecurity 22. Chapter 18: Challenges and Future Directions in Reinforcement Learning 23. Other Books You May Enjoy

Introducing the reward: Markov reward process

In our robot example so far, we have not really identified any situation/state that is "good" or "bad." In any system though, there are desired states to be in and there are other states that we want to avoid. In this section, we attach rewards to states/transitions, which gives us a Markov Reward Process (MRP). We then assess the "value" of each state.

Attaching rewards to the grid world example

Remember the version of the robot example where it could not bounce back to the cell it was in when it hits a wall, but crashes in a way that it is not recoverable. From now on, we will work on that version, and attach rewards to the process. Now, let's build this example:

  1. We modify the transition probability matrix to assign self-transition probabilities to the "crashed" state that we add to the matrix:
    P = np.zeros((m2 + 1, m2 + 1))
    P[:m2, :m2] = get_P(3, 0.2, 0.3, 0.25, 0.25)
    for i in...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime