Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Python Networking

You're reading from   Mastering Python Networking Your one-stop solution to using Python for network automation, programmability, and DevOps

Arrow left icon
Product type Paperback
Published in Jan 2020
Publisher Packt
ISBN-13 9781839214677
Length 576 pages
Edition 3rd Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Eric Chou Eric Chou
Author Profile Icon Eric Chou
Eric Chou
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Review of TCP/IP Protocol Suite and Python 2. Low-Level Network Device Interactions FREE CHAPTER 3. APIs and Intent-Driven Networking 4. The Python Automation Framework – Ansible Basics 5. The Python Automation Framework – Beyond Basics 6. Network Security with Python 7. Network Monitoring with Python – Part 1 8. Network Monitoring with Python – Part 2 9. Building Network Web Services with Python 10. AWS Cloud Networking 11. Azure Cloud Networking 12. Network Data Analysis with Elastic Stack 13. Working with Git 14. Continuous Integration with Jenkins 15. Test-Driven Development for Networks 16. Other Books You May Enjoy
17. Index

Data ingestion with Beats

As good as Logstash is, the process of data ingestion can get complicated and hard to scale. If we expand on our network log example, we can see that even with just network logs it can get complicated trying to parse different log formats from IOS routers, NXOS routers, ASA firewalls, Meraki wireless controllers, and more. What if we need to ingest log data from Apache web logs, server host health, and security information? What about data formats such as NetFlow, SNMP, and counters? The more data we need to aggregate, the more complicated it can get.

While we cannot completely get away from aggregation and the complexity of data ingestion, the current trend is to move toward a more lightweight, single-purpose agent that sits as close to the data source as possible. For example, we can have a data collection agent installed directly on our Apache server specialized in collecting web log data; or we can have a host that only collects, aggregates, and organizes...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime