Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Predictive Analytics with R, Second Edition

You're reading from   Mastering Predictive Analytics with R, Second Edition Machine learning techniques for advanced models

Arrow left icon
Product type Paperback
Published in Aug 2017
Publisher Packt
ISBN-13 9781787121393
Length 448 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
James D. Miller James D. Miller
Author Profile Icon James D. Miller
James D. Miller
Rui Miguel Forte Rui Miguel Forte
Author Profile Icon Rui Miguel Forte
Rui Miguel Forte
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Gearing Up for Predictive Modeling FREE CHAPTER 2. Tidying Data and Measuring Performance 3. Linear Regression 4. Generalized Linear Models 5. Neural Networks 6. Support Vector Machines 7. Tree-Based Methods 8. Dimensionality Reduction 9. Ensemble Methods 10. Probabilistic Graphical Models 11. Topic Modeling 12. Recommendation Systems 13. Scaling Up 14. Deep Learning Index

Alternatives

Since R is an in-memory language, it sometimes has a reputation of not being able to handle big data. However, using some creativity and strategic thinking, you can use big data in your predictive analytics projects quite successfully.

In addition to the preceding approaches, there are currently a number of alternative approaches you may wish to research, such as:

Chunking

There are packages available that avoid storing data in memory. Instead, objects are stored on hard disk and analyzed in chunks. As a side effect, the chunking also leads naturally to parallelization, if the algorithms allow parallel analysis of the chunks in principle. You can search: Revolution R Enterprise for some background on the topic.

Alternative language integrations

Integrating higher performing programming languages is becoming a popular alternative to dealing with big data sources in R. This concept takes portions of R code and moves them to another language that may be better suited to carry out the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime