Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Machine Learning with R

You're reading from   Mastering Machine Learning with R Master machine learning techniques with R to deliver insights for complex projects

Arrow left icon
Product type Paperback
Published in Oct 2015
Publisher
ISBN-13 9781783984527
Length 400 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Cory Lesmeister Cory Lesmeister
Author Profile Icon Cory Lesmeister
Cory Lesmeister
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. A Process for Success 2. Linear Regression – The Blocking and Tackling of Machine Learning FREE CHAPTER 3. Logistic Regression and Discriminant Analysis 4. Advanced Feature Selection in Linear Models 5. More Classification Techniques – K-Nearest Neighbors and Support Vector Machines 6. Classification and Regression Trees 7. Neural Networks 8. Cluster Analysis 9. Principal Components Analysis 10. Market Basket Analysis and Recommendation Engines 11. Time Series and Causality 12. Text Mining A. R Fundamentals Index

Modeling and evaluation


For the modeling and evaluation step, we will focus on three tasks. The first is to produce a univariate forecast model applied to just the surface temperature. The second is developing a regression model of the surface temperature based on itself and carbon emissions. Finally, we will try and discover if emissions Granger-cause the surface temperature anomalies.

Univariate time series forecasting

With this task, the objective is to produce a univariate forecast for the surface temperature, focusing on choosing either a Holt linear trend model or an ARIMA model. As discussed previously, the temperature anomalies start to increase around 1970. Therefore, I recommend looking at it from this point to the present. The following code creates the subset and plots the series:

> T2 = window(T, start=1970)

> plot(T2)

Our train and test sets will be through 2007, giving us eight years of data to evaluate for the selection. Once again, the window() function allows us to...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime