Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Embedded Linux Programming

You're reading from   Mastering Embedded Linux Programming Create fast and reliable embedded solutions with Linux 5.4 and the Yocto Project 3.1 (Dunfell)

Arrow left icon
Product type Paperback
Published in May 2021
Publisher Packt
ISBN-13 9781789530384
Length 758 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Frank Vasquez Frank Vasquez
Author Profile Icon Frank Vasquez
Frank Vasquez
Mr. Chris Simmonds Mr. Chris Simmonds
Author Profile Icon Mr. Chris Simmonds
Mr. Chris Simmonds
Arrow right icon
View More author details
Toc

Table of Contents (27) Chapters Close

Preface 1. Section 1: Elements of Embedded Linux
2. Chapter 1: Starting Out FREE CHAPTER 3. Chapter 2: Learning about Toolchains 4. Chapter 3: All about Bootloaders 5. Chapter 4: Configuring and Building the Kernel 6. Chapter 5: Building a Root Filesystem 7. Chapter 6: Selecting a Build System 8. Chapter 7: Developing with Yocto 9. Chapter 8: Yocto Under the Hood 10. Section 2: System Architecture and Design Decisions
11. Chapter 9: Creating a Storage Strategy 12. Chapter 10: Updating Software in the Field 13. Chapter 11: Interfacing with Device Drivers 14. Chapter 12: Prototyping with Breakout Boards 15. Chapter 13: Starting Up – The init Program 16. Chapter 14: Starting with BusyBox runit 17. Chapter 15: Managing Power 18. Section 3: Writing Embedded Applications
19. Chapter 16: Packaging Python 20. Chapter 17: Learning about Processes and Threads 21. Chapter 18: Managing Memory 22. Section 4: Debugging and Optimizing Performance
23. Chapter 19: Debugging with GDB 24. Chapter 20: Profiling and Tracing 25. Chapter 21: Real-Time Programming 26. Other Books You May Enjoy

Preface

Linux has been the mainstay of embedded computing for many years. And yet, there are remarkably few books that cover the topic as a whole: this book is intended to fill that gap. The term "embedded Linux" is not well defined and can be applied to the operating system inside a wide range of devices ranging from thermostats to Wi-Fi routers to industrial control units. However, they are all built on the same basic open source software. Those are the technologies that I describe in this book, based on my experience as an engineer and the materials I have developed for my training courses.

Technology does not stand still. The industry based around embedded computing is just as susceptible to Moore's law as mainstream computing. The exponential growth that this implies has meant that a surprisingly large number of things have changed since the first edition of this book was published. This third edition is fully revised to use the latest versions of the major open source components, which include Linux 5.4, the Yocto Project 3.1 Dunfell, and Buildroot 2020.02 LTS. In addition to Autotools, the book now covers CMake, a modern build system that has seen increased adoption in recent years.

Mastering Embedded Linux Programming covers the topics in roughly the order that you will encounter them in a real-life project. The first eight chapters are concerned with the early stages of the project, covering basics such as selecting the toolchain, the bootloader, and the kernel. I introduce the idea of embedded build systems, using Buildroot and the Yocto Project as examples. The section ends with new in-depth coverage of the Yocto Project.

Section 2, Chapters 9 to 15, looks at the various design decisions that need to be made before development can take place in earnest. It covers the topics of filesystems, software update, device drivers, the init program, and power management. Chapter 12 demonstrates various techniques for rapid prototyping with a breakout board, including how to read schematics, solder headers, and troubleshoot signals using a logic analyzer. Chapter 14 is a deep dive into Buildroot where you will learn how to partition your system software into separate services using BusyBox runit.

Section 3, Chapters 16, 17, and 18, will help you in the implementation phase of the project. We start with Python packaging and dependency management, a topic of growing importance as machine learning applications continue to take the world by storm. Next, we move on to various forms of inter-process communication and multithreaded programming. The section concludes with a careful examination of how Linux manages memory and demonstrates how to measure memory usage and detect memory leaks using the various tools that are available.

The fourth section, which includes Chapters 19 and 20, shows you how to make effective use of the many debug and profiling tools that Linux has to offer in order to detect problems and identify bottlenecks. Chapter 19 now describes how to configure Visual Studio Code for remote debugging using GDB. Chapter 20 now includes coverage of BPF, a new technology that enables advanced programmatic tracing inside the Linux kernel. The final chapter brings together several threads to explain how Linux can be used in real-time applications.

Each chapter introduces a major area of embedded Linux. It describes the background so that you can learn the general principles, but it also includes detailed working examples that illustrate each of these areas. You can treat this as a book of theory, or a book of examples. It works best if you do both: understand the theory and try it out in real life.

lock icon The rest of the chapter is locked
Next Section arrow right
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime