Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning with Spark

You're reading from   Machine Learning with Spark Develop intelligent, distributed machine learning systems

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781785889936
Length 532 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Manpreet Singh Ghotra Manpreet Singh Ghotra
Author Profile Icon Manpreet Singh Ghotra
Manpreet Singh Ghotra
Rajdeep Dua Rajdeep Dua
Author Profile Icon Rajdeep Dua
Rajdeep Dua
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Up and Running with Spark FREE CHAPTER 2. Math for Machine Learning 3. Designing a Machine Learning System 4. Obtaining, Processing, and Preparing Data with Spark 5. Building a Recommendation Engine with Spark 6. Building a Classification Model with Spark 7. Building a Regression Model with Spark 8. Building a Clustering Model with Spark 9. Dimensionality Reduction with Spark 10. Advanced Text Processing with Spark 11. Real-Time Machine Learning with Spark Streaming 12. Pipeline APIs for Spark ML

MLlib versions compared

In this section, we will compare various versions of MLlib and new functionality, which has been added.

Spark 1.6 to 2.0

The DataFrame-based API will be the primary API.

The RDD-based API is entering maintenance mode. The MLlib guide (http://spark.apache.org/docs/2.0.0/ml-guide.html) provides more details.

The following are the new features introduced in Spark 2.0:

  • ML persistence: The DataFrames-based API provides support for saving and loading ML models and Pipelines in Scala, Java, Python, and R
  • MLlib in R: SparkR offers MLlib APIs for generalized linear models, naive Bayes, k-means clustering, and survival regression in this release
  • Python: PySpark in 2.0 supports new MLlib algorithms, LDA, Generalized Linear Regression, Gaussian Mixture...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime