Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning in Biotechnology and Life Sciences

You're reading from   Machine Learning in Biotechnology and Life Sciences Build machine learning models using Python and deploy them on the cloud

Arrow left icon
Product type Paperback
Published in Jan 2022
Publisher Packt
ISBN-13 9781801811910
Length 408 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Saleh Alkhalifa Saleh Alkhalifa
Author Profile Icon Saleh Alkhalifa
Saleh Alkhalifa
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: Getting Started with Data
2. Chapter 1: Introducing Machine Learning for Biotechnology FREE CHAPTER 3. Chapter 2: Introducing Python and the Command Line 4. Chapter 3: Getting Started with SQL and Relational Databases 5. Chapter 4: Visualizing Data with Python 6. Section 2: Developing and Training Models
7. Chapter 5: Understanding Machine Learning 8. Chapter 6: Unsupervised Machine Learning 9. Chapter 7: Supervised Machine Learning 10. Chapter 8: Understanding Deep Learning 11. Chapter 9: Natural Language Processing 12. Chapter 10: Exploring Time Series Analysis 13. Section 3: Deploying Models to Users
14. Chapter 11: Deploying Models with Flask Applications 15. Chapter 12: Deploying Applications to the Cloud 16. Other Books You May Enjoy

Understanding DR

The second category of UL that we will discuss is known as DR. As the full name states, these are simply methods used to reduce the number of dimensions in a given dataset. Take, for example, a highly featured dataset with 100 or so columns—DR algorithms can be used to help reduce the number of columns down to perhaps 5 while preserving the value that each of those original 100 columns contains. You can think of DR as the process of condensing a dataset in a horizontal fashion. The resulting columns can generally be divided into two types: new features, in the sense that a new column with new numerical values was generated in a process known as Feature Engineering (FE), or old features, in the sense that only the most useful columns were preserved in a process known as feature selection. Over the course of the following section and within the confines of UL, we will be focusing more on the aspect of FE as we create new features representing reduced versions...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime