Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning for Mobile

You're reading from   Machine Learning for Mobile Practical guide to building intelligent mobile applications powered by machine learning

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher Packt
ISBN-13 9781788629355
Length 274 pages
Edition 1st Edition
Tools
Arrow right icon
Authors (2):
Arrow left icon
Avinash Venkateswarlu Avinash Venkateswarlu
Author Profile Icon Avinash Venkateswarlu
Avinash Venkateswarlu
Revathi Gopalakrishnan Revathi Gopalakrishnan
Author Profile Icon Revathi Gopalakrishnan
Revathi Gopalakrishnan
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Introduction to Machine Learning on Mobile FREE CHAPTER 2. Supervised and Unsupervised Learning Algorithms 3. Random Forest on iOS 4. TensorFlow Mobile in Android 5. Regression Using Core ML in iOS 6. The ML Kit SDK 7. Spam Message Detection 8. Fritz 9. Neural Networks on Mobile 10. Mobile Application Using Google Vision 11. The Future of ML on Mobile Applications 12. Question and Answers 13. Other Books You May Enjoy

Deep dive into unsupervised learning algorithms

Unsupervised machine learning deals with learning unlabeled data—that is, data that has not been classified or categorized, and arriving at conclusions/patterns in relation to them.

These categories learn from test data that has not been labeled, classified, or categorized. Instead of responding to feedback, unsupervised learning identifies commonalities in the data and reacts based on the presence or absence of such commonalities in each new piece of data.

The input given to the learning algorithm is unlabeled and, hence, there is no straightforward way to evaluate the accuracy of the structure that is produced as output by the algorithm. This is one feature that distinguishes unsupervised learning from supervised learning. 

The unsupervised algorithms have predictor attributes but NO objective function...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image