Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Machine Learning at Scale with H2O
Machine Learning at Scale with H2O

Machine Learning at Scale with H2O: A practical guide to building and deploying machine learning models on enterprise systems

Arrow left icon
Profile Icon Gregory Keys Profile Icon David Whiting
Arrow right icon
$9.99 $33.99
Full star icon Full star icon Full star icon Full star icon Full star icon 5 (2 Ratings)
eBook Jul 2022 396 pages 1st Edition
eBook
$9.99 $33.99
Paperback
$41.99
Subscription
Free Trial
Renews at $19.99p/m
Arrow left icon
Profile Icon Gregory Keys Profile Icon David Whiting
Arrow right icon
$9.99 $33.99
Full star icon Full star icon Full star icon Full star icon Full star icon 5 (2 Ratings)
eBook Jul 2022 396 pages 1st Edition
eBook
$9.99 $33.99
Paperback
$41.99
Subscription
Free Trial
Renews at $19.99p/m
eBook
$9.99 $33.99
Paperback
$41.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Machine Learning at Scale with H2O

Chapter 1: Opportunities and Challenges

Machine Learning (ML) and data science are winning a popularity contest of sorts, as witnessed by their headline coverage in the popular and professional press and by expanding job openings across the technology landscape. Students typically learn ML techniques using their own computers on relatively small datasets. Those who enter the field often find themselves in the much different setting of a large company buzzing with workers performing specialized job roles, while collaborating with others scattered across the nation or world. Both data science students and data science workers have a few key things in common – they are in an exciting and growing field that businesses deem ever more critical to their future, and the data they thrive on is becoming exponentially more abundant and diverse.

There are huge opportunities for ML in enterprises because the transformational impacts of ML on businesses, customers, patients, and so on are diverse, widespread, lucrative, and life-changing. A backdrop of urgency exists as well from competitors who are all attempting the same thing. Enterprises are thus incented to invest in significant ML transformations and to supply the necessary data, tooling, production systems, and people to journey toward ML success. But challenges loom large as well, and these challenges commonly revolve around scale. The challenges of scale take on many forms inherent to ML at an enterprise level.

In this chapter, we will define and explore the challenge of ML at scale by covering the following main topics:

  • ML at scale
  • The ML life cycle and three challenge areas for ML at scale
  • H2O.ai's answer to these challenges

ML at scale

This book is about implementing ML at scale and how to use H2O.ai technology to succeed in doing so. What specifically do we mean by ML at scale? We can see three contexts and challenges of scale during the ML life cycle – building models from large datasets, deploying these models in enterprise production environments, and executing the full range of ML activities within the complexities of enterprise processes and stakeholders. This is summarized in the following figure:

Figure 1.1 – The challenges of ML at scale

Figure 1.1 – The challenges of ML at scale

Let's drill down further on these challenges. Before doing so, we will oversee a generic conception of the ML life cycle, which will be useful as a reference throughout the book.

The ML life cycle and three challenge areas for ML at scale

The ML life cycle is a process that data scientists and enterprise stakeholders follow to build ML models and put them into production environments, where they make predictions and achieve value. In this section, we will define a simplified ML life cycle and elaborate on two broad areas that present special challenges for ML at scale.

A simplified ML life cycle

We will use the following ML life cycle representation. The goal is to achieve a simplified depiction that we can all recognize as central to ML while avoiding attempts at a canonical definition. Let's use it as our working framework for discussion:

Figure 1.2 – A simplified ML life cycle

Figure 1.2 – A simplified ML life cycle

The following is a brief articulation.

Model building

Model building is a highly iterative process with frequent and unpredictable feedback loops along the way toward building a predictive model that is worthy of deploying in a business context. The steps can be summarized as follows:

  • Data ingestion: Data is pulled from sources or a storage layer in the model building environment. There is often significant work onward from here in finding and accessing potentially useful data sources and transforming the data into a useable form. Typically, this is done as part of a larger data pipeline and architecture.
  • Data exploration: Data is explored to understand its qualities (for example, data profiling, correlation analysis, outlier detection, and data visualization).
  • Data manipulation: Data is cleaned (for example, the imputation of missing data, the reduction of categorical features, and normalization) and new features are engineered. 
  • Model training: An ML algorithm, scoring metric, and validation method are selected, and the model is tuned across a range of hyperparameters and tested against a test dataset.
  • Model evaluation and explainability: A fit of the model is diagnosed for performance metrics, overfitting, and other diagnostics; model explainability is used to validate against domain knowledge, to explain the model decisions at individual and global levels, and to guard against institutional risks such as unfair bias against demographic groups. 
  • Model deployment: The model is deployed as a scoring artifact to a software system and live scoring is made.
  • Model monitoring: The model is monitored to detect whether the data fed into it changes over time compared to the distribution of data it was trained on. This is called data drift and usually leads to the decreased predictive power of the model. This usually triggers the need to retrain the model with a more current dataset and then redeploy the updated model. The model may also be monitored for other patterns, such as whether it is biasing decisions against a particular demographic group and whether malicious attacks are being made to try to cause the model to malfunction.

As mentioned, a key property in the workflow is the unknown number and sequence of iteration pathways taken between these steps before a model is deployed or before the project is deemed unsuccessful in reaching that stage.

The model building challenge – state-of-the-art models at scale

Let's, for now, define a large dataset as any dataset that exceeds your ability to build ML models on your laptop or local workstation. It may be too large because your libraries simply crash or because they take an unreasonable amount of time to complete. This may occur during model training or during data ingestion, exploration, and manipulation.

We can see four separate challenges of building ML models from large data volumes, with each contributing to a larger problem in general that we call the friction of iteration. This is represented in the following diagram:

Figure 1.3 – The challenge of model building with large data volumes

Figure 1.3 – The challenge of model building with large data volumes

Let's elaborate on this.

Challenge one – data size and location

Enterprises collect and store vast amounts of diverse data and that is a boon to the data scientist looking to build accurate models. These datasets are either stored across many systems or centralized in a common storage layer (data lake) such as the Hadoop Distributed File System (HDFS) or AWS S3. Architecting and making data available to internal consumers is a major effort and challenge for an enterprise. However, the data scientist starting the ML life cycle with large datasets typically cannot move that data, once it becomes accessible, to a local environment due to either security reasons or high volume of data.. The consequence is that the data scientist must either do one of the following:

  • Move operations on the data (in other words, move the compute) to the data itself.
  • Move data to a high-compute environment that they are authorized to use.

Challenge two – data size and data manipulation

Manipulating data can be compute-intensive, and attempting to do so against insufficient resources either will cause the compute to fail (for example, the script, library, or tool will crash) or take an unreasonably long amount of time. Who wants to wait 10 hours to join and filter table data when it can be done in 10 minutes? What you might consider an unreasonable amount of time is obviously relative to the dataset size; terabytes of data will always take longer to process than a few megabytes. Regardless, the speed of your data processing is critical to reducing the sum time of your iterations.

Challenge three – data size and data exploration

Challenges of data size during data exploration are identical to those during data manipulation. The data may be so large that your processing crashes or takes an unreasonable amount of time to complete while exploring models.

Challenge four – data size and model training

ML algorithms are extremely compute-intensive because they step through each record of a dataset and perform complex calculations each time, and then iterate these calculations against the dataset repeatedly to optimize toward a training metric and thus learn a predictive mathematical pattern among the noise. Our compute environment is particularly pressured during model training.

Up until now, we have been discussing dataset size in relative terms; that is, large data volumes are those that cause operations on them to either fail or take a long time to complete in a given compute environment. 

In absolute terms, data scientists often explore the largest dataset possible to understand it and then sample it for model training. Others always try to use the largest dataset for model training. However, accurate models can be built from 10 GB or less of sampled or unsampled data.

The key to proper use of sampling is that you have followed appropriate statistical and theoretical practices, and not that you are forced to do so because your ML processing will crash or take a long time to complete due to large data volumes. The latter is a bad practice that produces inferior models and H2O.ai overcomes this by allowing model building with massive data volumes.

There are also cases when data sampling may not lead to an acceptable model. In other words, the data scientist may need hundreds of gigabytes or a terabyte or more of data to build a valuable model. These are cases when the following applies:

  • The data scientist does not trust the sampling to produce the best model and feels that each small gain in lift warrants the use of the full dataset.
  • The data scientist does not want to segment the data into separate datasets and thus separate model building exercises, or the larger stakeholder group wants a single model in production that predicts against all segments versus many that each predicts against a single segment.
  • The data is highly dimensional, sparse, or both. In this case, a large number of records are needed to reduce variance and overfitting to a training dataset. This type of dataset is typical for anomaly detection, recommendation engines, predictive maintenance, security threat detection, personalized medicine, and so on. It is worth noting that the future will bring us more and more data, and thus highly dimensional and sparse datasets will become more common.
  • The data is extremely imbalanced. The target variable is very rare in the dataset and a massive dataset is needed to avoid underfitting, overfitting, or weighting the target variable from these infrequent records.
  • The data is highly volatile. Each subset of data that is collected is unrepresentative of the others and thus sampling or cross-validation folds may not be representative. Time series forecasting may be particularly sensitive to this problem, especially when forecast categories are highly granular (for example, yearly, monthly, daily, and hourly) against a single validation dataset.

The friction of iteration

Model building is a highly iterative process and anything that slows it down we call the friction of iteration. These causes can be due to the challenges of working with large data volumes, as previously discussed. They can also arise from simple workflow patterns such as switching among systems between each iteration or launching new environments to work on an iteration.

Any slowness during a single iteration may seem acceptable but when multiplied across the seemingly endless iterations from the project beginning to failure or success, the cost in time from this friction becomes significant, and reducing friction can be valuable. As we will see in the next section, slow model building delays the main goal of ML in an enterprise – achieving business value.

The business challenge – getting your models into enterprise production systems

The bare truth about ML initiatives is that they do not really achieve value until they are deployed to a live scoring environment. Models must meet evaluation criteria and be put into production to be deemed successful. Until that happens, from a business standpoint, little is achieved. This may seem a bit harsh, but it is typically how success is defined in data science initiatives. The following diagram maps this thinking onto the ML life cycle:

Figure 1.4 – The ML life cycle value chain

Figure 1.4 – The ML life cycle value chain

The friction of iteration from this view is thus a cost. Time taken to iterate through model building is time taken from getting business results. In other words, lower friction translates to less time to build and deploy a model to achieve business value, and more time to work on other problems and thus more models per quarter or year.

From the same point of view, time to deploy a model is viewed as a cost for similar reasons. The model deployment step may seem like a simple one-step sequence of transitioning the model to DevOps, but typically it is not. Anything that makes a model easier and more repeatable to deploy, document, and govern helps businesses achieve value sooner.

Let's now continue expanding on a larger landscape of enterprise stakeholders that data scientists must work with to build models that ultimately achieve business value.

The navigation challenge – navigating the enterprise stakeholder landscape

The data scientist in any enterprise does not work in isolation. There are multiple stakeholders who become involved directly in the ML life cycle or, more broadly, in the business cycle of initiating and consuming ML projects. Who might some of these stakeholders be? At a bare minimum, they include the business stakeholder who funded the ML project, the administrator providing the data scientist with permissions and capabilities, the DevOps or engineering team members who are responsible for model deployment and the infrastructure supporting it, perhaps marketing or sales associates whose functions are impacted directly by the model, and any other representatives of the internal or external consumers of the model. In more heavily regulated industries such as banking, insurance, or pharmaceuticals, these might include representatives or offices of various audit and risk functions – data risk, code risk, model risk, legal risk, reputational risk, compliance, external regulators, and so on. The following figure shows a general view:

Figure 1.5 – Data scientists working with enterprise stakeholders and processes

Figure 1.5 – Data scientists working with enterprise stakeholders and processes

Stakeholder interaction is thus complex. What leads to this complexity? Obviously, the specialization and siloing of job functions make things complex, and this is further amplified by the scale of the enterprise. A larger dynamic of creating repeatable processes and minimizing risk contributes as well. Explaining this complexity is the task of a different book, but its reality in the enterprise is inescapable. To a data scientist, the ability to recognize, influence, negotiate with, deliver to, and ultimately build trust with these various stakeholders is imperative to successful ML solutions at scale. 

Now that we have understood the ML life cycle and the challenges inherent in its successful execution at scale, it is time for a brief introduction to how H2O.ai solves these challenges.

H2O.ai's answer to these challenges

H2O.ai provides software to build ML models at scale and overcome the challenges of doing so – model building at scale, model deployment at scale, and dealing with enterprise stakeholders' concerns and inherent friction along the way. These components are described in brief in the following diagram:

Figure 1.6 – H2O ML at scale

Figure 1.6 – H2O ML at scale

Subsequent chapters of this book elaborate on how these components are used to build and deploy state-of-the-art models within the complexities of the enterprise environment.

Let's try to understand these components at first glance:

  • H2O Core: This is open source software that distributes state-of-the-art ML algorithms and data manipulations over a specified number of servers on Kubernetes, Hadoop, or Spark environments. Data is partitioned in memory across the designated number of servers and ML algorithm computation is run in parallel using it.

This architecture creates horizontal scalability of model building to hundreds of gigabytes or terabytes of data and generally fast processing times at lower data volumes. Data scientists work with familiar IDEs, languages, and algorithms and are abstracted away from the underlying architecture. Thus, for example, a data scientist can run an XGBoost model in Python from a Jupyter notebook against 500 GB of data in Hadoop, similar to doing so with data loaded into their laptop.

H2O Core is often referred to as H2O Open Source and comes in two forms, H2O-3 and Sparkling Water, which we will elaborate on in subsequent chapters. H2O Core can be run as a scaled-down sandbox on a single server or laptop.

  • H2O Enterprise Steam: This is a web UI or API for data scientists to self-provision and manage their individual H2O Core environments. Self-provisioning includes auto-calculation of horizontal scaling based on user inputs that describe the data. Enterprise Steam is also used by administrators to manage users, including defining boundaries for their resource consumption, and to configure H2O Core integration against Hadoop, Spark, or Kubernetes.
  • H2O MOJO: This is an easy-to-deploy scoring artifact exportable from models built from H2O Core. MOJOs are low latency (typically < 100 ms or faster) Java binaries that can run on any Java Virtual Machine (JVM) and thus serve predictions on diverse software systems, such as REST servers, database clients, Amazon SageMaker, Kafka queues, Spark pipelines, Hive user-defined functions (UDFs), and Internet of Things (IoT) devices.
  • APIs: Each component has a rich set of APIs so that you can automate workflows, including continuous integration and continuous delivery (CI/CD) and retraining pipelines.

The focus of this book is on building and deploying state-of-the-art models at scale using H2O Core with help from Enterprise Steam and deploying those models as MOJOs within the complexities of enterprise environments.

H2O at Scale and H2O AI Cloud

We refer to H2O at scale in this book as H2O Enterprise Steam, H2O Core, and H2O Mojo because it addresses the ML at scale challenges described earlier in this chapter, especially through the distributed ML scalability that H2O Core provides for model building.

Note that H2O.ai offers a larger end-to-end ML platform called the H2O AI Cloud. The H2O AI Cloud integrates a hyper-advanced AutoML tool (called H2O Driverless AI) and other model building engines, an MLOps scoring, monitoring, and governance environment (called H2O MLOps), and a low-code software development kit, or SDK (called H2O Wave) with H2O API hooks to build AI applications that publish to the App Store. It also integrates H2O at scale as defined in this book.

H2O at scale can be deployed as standalone or as part of the H2O AI Cloud. As a standalone implementation, Enterprise Steam is not in fact required, but for reasons elaborated on later in this book, Enterprise Steam is deemed essential for enterprise implementations.

The majority of this book is focused on H2O at scale. The last part of the book will extend our understanding to the H2O AI Cloud and how H2O at scale components can leverage this larger integrated platform and vice versa.

Summary

In this chapter, we have set the stage for understanding and implementing ML at scale using H2O.ai technology. We have defined multiple forms of scale in an enterprise setting and articulated the challenges to ML from model building, model deployment, and enterprise stakeholder perspectives. We have anchored these challenges ultimately to the end goal of ML – providing business value. Finally, we briefly introduced H2O at scale components used by enterprises to overcome these challenges and achieve business value.

In the next chapter, we'll start to understand these components in greater technical detail so that we can start writing code and doing data science.

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Build highly accurate state-of-the-art machine learning models against large-scale data
  • Deploy models for batch, real-time, and streaming data in a wide variety of target production systems
  • Explore all the new features of the H2O AI Cloud end-to-end machine learning platform

Description

H2O is an open source, fast, and scalable machine learning framework that allows you to build models using big data and then easily productionalize them in diverse enterprise environments. Machine Learning at Scale with H2O begins with an overview of the challenges faced in building machine learning models on large enterprise systems, and then addresses how H2O helps you to overcome them. You’ll start by exploring H2O’s in-memory distributed architecture and find out how it enables you to build highly accurate and explainable models on massive datasets using your favorite ML algorithms, language, and IDE. You’ll also get to grips with the seamless integration of H2O model building and deployment with Spark using H2O Sparkling Water. You’ll then learn how to easily deploy models with H2O MOJO. Next, the book shows you how H2O Enterprise Steam handles admin configurations and user management, and then helps you to identify different stakeholder perspectives that a data scientist must understand in order to succeed in an enterprise setting. Finally, you’ll be introduced to the H2O AI Cloud platform and explore the entire machine learning life cycle using multiple advanced AI capabilities. By the end of this book, you’ll be able to build and deploy advanced, state-of-the-art machine learning models for your business needs.

Who is this book for?

This book is for data scientists and machine learning engineers who want to gain hands-on machine learning experience by building and deploying state-of-the-art models with advanced techniques using H2O technology. An understanding of the data science process and experience in Python programming is recommended. This book will also benefit students by helping them understand how machine learning works in real-world enterprise scenarios.

What you will learn

  • Build and deploy machine learning models using H2O
  • Explore advanced model-building techniques
  • Integrate Spark and H2O code using H2O Sparkling Water
  • Launch self-service model building environments
  • Deploy H2O models in a variety of target systems and scoring contexts
  • Expand your machine learning capabilities on the H2O AI Cloud

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jul 29, 2022
Length: 396 pages
Edition : 1st
Language : English
ISBN-13 : 9781800569294
Category :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Jul 29, 2022
Length: 396 pages
Edition : 1st
Language : English
ISBN-13 : 9781800569294
Category :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 221.97
Machine Learning at Scale with H2O
$41.99
The Machine Learning Solutions Architect Handbook
$89.99
Solutions Architect's Handbook
$89.99
Total $ 221.97 Stars icon
Banner background image

Table of Contents

20 Chapters
Section 1 – Introduction to the H2O Machine Learning Platform for Data at Scale Chevron down icon Chevron up icon
Chapter 1: Opportunities and Challenges Chevron down icon Chevron up icon
Chapter 2: Platform Components and Key Concepts Chevron down icon Chevron up icon
Chapter 3: Fundamental Workflow – Data to Deployable Model Chevron down icon Chevron up icon
Section 2 – Building State-of-the-Art Models on Large Data Volumes Using H2O Chevron down icon Chevron up icon
Chapter 4: H2O Model Building at Scale – Capability Articulation Chevron down icon Chevron up icon
Chapter 5: Advanced Model Building – Part I Chevron down icon Chevron up icon
Chapter 6: Advanced Model Building – Part II Chevron down icon Chevron up icon
Chapter 7: Understanding ML Models Chevron down icon Chevron up icon
Chapter 8: Putting It All Together Chevron down icon Chevron up icon
Section 3 – Deploying Your Models to Production Environments Chevron down icon Chevron up icon
Chapter 9: Production Scoring and the H2O MOJO Chevron down icon Chevron up icon
Chapter 10: H2O Model Deployment Patterns Chevron down icon Chevron up icon
Section 4 – Enterprise Stakeholder Perspectives Chevron down icon Chevron up icon
Chapter 11: The Administrator and Operations Views Chevron down icon Chevron up icon
Chapter 12: The Enterprise Architect and Security Views Chevron down icon Chevron up icon
Section 5 – Broadening the View – Data to AI Applications with the H2O AI Cloud Platform Chevron down icon Chevron up icon
Chapter 13: Introducing H2O AI Cloud Chevron down icon Chevron up icon
Chapter 14: H2O at Scale in a Larger Platform Context Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Full star icon Full star icon 5
(2 Ratings)
5 star 100%
4 star 0%
3 star 0%
2 star 0%
1 star 0%
Yiqiao Yin Aug 11, 2022
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I really enjoyed reading this book. It's definitely a great introduction book for data scientists and machine learning engineers who want to gain some efficient fast hands-on experience. In addition, I get get to learn some new fancy tools of building and deploying state-of-the-art models with advanced techniques using H2O technology. It certainyl helps my understanding of the data science process and experience using Python programming. This book will also benefit students by helping them understand how machine learning works in real-world enterprise scenarios.✅Learn different perspective of machine learning deployment strategies at enterprise level✅Address novel techniques and deploy ML algorithms that tackle big data problems✅Use H2O Sparkling Water to navigate through different largescale datasets
Amazon Verified review Amazon
Chemere L Davis Sep 13, 2022
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book is an approachable guide to creating machine learning models on massive data in a reliable, repeatable, and resilient way. From novice to experienced professional there is a tip or trick for everyone. No matter what role you might play on a data science team, business stakeholder, operation, data science, Machine Learning at Scale with H2O is a playbook for a more successful implementation for real-world businesses.I've used H2O in building many models and still found new ways to make my models better. I highly recommend if you want to learn how to leverage machine learning from end-to-end for enterprise systems.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.