Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning Robotics using Python

You're reading from   Learning Robotics using Python Bring robotics projects to life with Python! Discover how to harness everything from Blender to ROS and OpenCV with one of our most popular robotics books.

Arrow left icon
Product type Paperback
Published in May 2015
Publisher Packt
ISBN-13 9781783287536
Length 330 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Toc

Table of Contents (14) Chapters Close

Preface 1. Introduction to Robotics 2. Mechanical Design of a Service Robot FREE CHAPTER 3. Working with Robot Simulation Using ROS and Gazebo 4. Designing ChefBot Hardware 5. Working with Robotic Actuators and Wheel Encoders 6. Working with Robotic Sensors 7. Programming Vision Sensors Using Python and ROS 8. Working with Speech Recognition and Synthesis Using Python and ROS 9. Applying Artificial Intelligence to ChefBot Using Python 10. Integration of ChefBot Hardware and Interfacing it into ROS, Using Python 11. Designing a GUI for a Robot Using Qt and Python 12. The Calibration and Testing of ChefBot Index

Block diagram of the robot


The robot's movement is controlled by two Direct Current (DC) gear motors with an encoder. The two motors are driven using a motor driver. The motor driver is interfaced into an embedded controller board, which will send commands to the motor driver to control the motor movements. The encoder of the motor is interfaced into the controller board for counting the number of rotations of the motor shaft. This data is the odometry data from the robot. There are ultrasonic sensors, which are interfaced into the controller board for sensing the obstacles and measuring the distance from the obstacles. There is an IMU sensor to improve odometry calculation. The embedded controller board is interfaced into a PC, which does all the high-end processing in the robot. Vision and sound sensors are interfaced into the PC and Wi-Fi is attached for remote operations.

Each block of the robot is explained in the following diagram:

Robot Hardware block Diagram

Motor and encoder

The robot...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image