Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learning Predictive Analytics with Python

You're reading from   Learning Predictive Analytics with Python Gain practical insights into predictive modelling by implementing Predictive Analytics algorithms on public datasets with Python

Arrow left icon
Product type Paperback
Published in Feb 2016
Publisher
ISBN-13 9781783983261
Length 354 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Ashish Kumar Ashish Kumar
Author Profile Icon Ashish Kumar
Ashish Kumar
Gary Dougan Gary Dougan
Author Profile Icon Gary Dougan
Gary Dougan
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Getting Started with Predictive Modelling FREE CHAPTER 2. Data Cleaning 3. Data Wrangling 4. Statistical Concepts for Predictive Modelling 5. Linear Regression with Python 6. Logistic Regression with Python 7. Clustering with Python 8. Trees and Random Forests with Python 9. Best Practices for Predictive Modelling A. A List of Links
Index

Best practices for statistics

Statistics are an integral part of any predictive modelling assignment. Statistics are important because they help us gauge the efficiency of a model. Each predictive model generates a set of statistics, which suggests how good the model is and how the model can be fine-tuned to perform better. The following is a summary of the most widely reported statistics and their desired values for the predictive models described in this book:

Algorithms

Statistics/Parameter

The desired value of statistics

Linear regression

R2, p-values, F-statistic, and Adj. R2

High Adj. R2, low F-statistic, and low p-value

Logistic regression

Sensitivity, specificity, Area Under the Curve (AUC), and KS statistic

High AUC (proximity to 1)

Clustering

Intra-cluster distance and silhouette coefficient

High intra-cluster distance and high silhouette coefficient (proximity to 1)

Decision trees (classification)

AUC and KS statistics

High AUC (proximity to 1)

While reporting...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image