Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning Data Mining with Python

You're reading from   Learning Data Mining with Python Harness the power of Python to analyze data and create insightful predictive models

Arrow left icon
Product type Paperback
Published in Jul 2015
Publisher Packt
ISBN-13 9781784396053
Length 344 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Robert Layton Robert Layton
Author Profile Icon Robert Layton
Robert Layton
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Getting Started with Data Mining FREE CHAPTER 2. Classifying with scikit-learn Estimators 3. Predicting Sports Winners with Decision Trees 4. Recommending Movies Using Affinity Analysis 5. Extracting Features with Transformers 6. Social Media Insight Using Naive Bayes 7. Discovering Accounts to Follow Using Graph Mining 8. Beating CAPTCHAs with Neural Networks 9. Authorship Attribution 10. Clustering News Articles 11. Classifying Objects in Images Using Deep Learning 12. Working with Big Data A. Next Steps… Index

Text transformers


Now that we have our dataset, how are we going to perform data mining on it?

Text-based datasets include books, essays, websites, manuscripts, programming code, and other forms of written expression. All of the algorithms we have seen so far deal with numerical or categorical features, so how do we convert our text into a format that the algorithm can deal with?

There are a number of measurements that could be taken. For instance, average word and average sentence length are used to predict the readability of a document. However, there are lots of feature types such as word occurrence which we will now investigate.

Bag-of-words

One of the simplest but highly effective models is to simply count each word in the dataset. We create a matrix, where each row represents a document in our dataset and each column represents a word. The value of the cell is the frequency of that word in the document.

Here's an excerpt from The Lord of the Rings, J.R.R. Tolkien:

 

Three Rings for the Elven...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime