Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Machine Learning with TensorFlow.js

You're reading from   Hands-On Machine Learning with TensorFlow.js A guide to building ML applications integrated with web technology using the TensorFlow.js library

Arrow left icon
Product type Paperback
Published in Nov 2019
Publisher Packt
ISBN-13 9781838821739
Length 296 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Kai Sasaki Kai Sasaki
Author Profile Icon Kai Sasaki
Kai Sasaki
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: The Rationale of Machine Learning and the Usage of TensorFlow.js
2. Machine Learning for the Web FREE CHAPTER 3. Importing Pretrained Models into TensorFlow.js 4. TensorFlow.js Ecosystem 5. Section 2: Real-World Applications of TensorFlow.js
6. Polynomial Regression 7. Classification with Logistic Regression 8. Unsupervised Learning 9. Sequential Data Analysis 10. Dimensionality Reduction 11. Solving the Markov Decision Process 12. Section 3: Productionizing Machine Learning Applications with TensorFlow.js
13. Deploying Machine Learning Applications 14. Tuning Applications to Achieve High Performance 15. Future Work Around TensorFlow.js 16. Other Books You May Enjoy

Summary

In this chapter, we covered the basic tools and software that support web platforms. Web platforms are supported by numerous kinds of ecosystems, including programming languages that alternate between the de facto standard and package managers. While JavaScript is the primary language that's used in web applications, TypeScript is gaining popularity rapidly because of its safety and scalability.

Due to the way web platforms work, bundling all the resources into a portable format is required if we wish to publish the application. For machine learning applications in particular, it is common to have multiple types of resources in an application, such as images, audio, and movies, that can be used for training and prediction. Module bundlers can help us build the final artifacts. We looked at Parcel and Webpack so that we can use them to build a publishable format for...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime