In a recommendation task, you have a set of users interacting with a set of items and your job is to figure out which items are suitable for which users. You may know a thing or two about each user: where they live, how much they earn, whether they are logged in via their phone or their tablet, and more. Similarly, for an item—say, a movie—you know its genre, its production year, and how many Academy Awards it has won. Clearly, this looks like a classification problem. You can combine the user features with the item features and build a classifier for each user-item pair, and then try to predict whether the user will like the item or not. This approach is known as content-based filtering. As its name suggests, it is as good as the content or the features extracted from each user and each item. In practice, you may only know basic information about each user. A user's location or gender may reveal enough about their tastes...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine