The main goal of dimension reduction methods is to make the dimension of the transformed representation correspond with the internal dimension of the data. In other words, it should be similar to the minimum number of variables necessary to express all the possible properties of the data. Reducing the dimension helps mitigate the impact of the curse of dimensionality and other undesirable properties that occur in high-dimensional spaces. As a result, reducing dimensionality can effectively solve problems regarding classification, visualization, and compressing high-dimensional data. It makes sense to apply dimensionality reduction only when particular data is redundant; otherwise, we can lose important information. In other words, if we are able to solve the problem using data of smaller dimensions with the same level of efficiency and...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand