We started this chapter by learning about device synchronization and the importance of synchronization of operations on the GPU from the host; this allows dependent operations to allow antecedent operations to finish before proceeding. This concept has been hidden from us, as PyCUDA has been handling synchronization for us automatically up to this point. We then learned about CUDA streams, which allow for independent sequences of operations to execute on the GPU simultaneously without synchronizing across the entire GPU, which can give us a big performance boost; we then learned about CUDA events, which allow us to time individual CUDA kernels within a given stream, and to determine if a particular operation in a stream has occurred. Next, we learned about contexts, which are analogous to processes in a host operating system. We learned how to synchronize across an entire...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine