Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Deep Learning with Go

You're reading from   Hands-On Deep Learning with Go A practical guide to building and implementing neural network models using Go

Arrow left icon
Product type Paperback
Published in Aug 2019
Publisher Packt
ISBN-13 9781789340990
Length 242 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Darrell Chua Darrell Chua
Author Profile Icon Darrell Chua
Darrell Chua
Gareth Seneque Gareth Seneque
Author Profile Icon Gareth Seneque
Gareth Seneque
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: Deep Learning in Go, Neural Networks, and How to Train Them
2. Introduction to Deep Learning in Go FREE CHAPTER 3. What Is a Neural Network and How Do I Train One? 4. Beyond Basic Neural Networks - Autoencoders and RBMs 5. CUDA - GPU-Accelerated Training 6. Section 2: Implementing Deep Neural Network Architectures
7. Next Word Prediction with Recurrent Neural Networks 8. Object Recognition with Convolutional Neural Networks 9. Maze Solving with Deep Q-Networks 10. Generative Models with Variational Autoencoders 11. Section 3: Pipeline, Deployment, and Beyond!
12. Building a Deep Learning Pipeline 13. Scaling Deployment 14. Other Books You May Enjoy

CPUs versus GPUs

At this point, we've covered much of the basic theory and practice of neural networks, but we haven't given much consideration to the processors running them. So let's take a break from coding and go into more depth about the little slices of silicon that are actually doing the work.

The 30,000-foot view is that CPUs were originally designed to favor scalar operations, which are performed sequentially, and GPUs are designed for vector operations, which are performed in parallel. Neural networks perform a large number of independent calculations within a layer (say, each neuron multiplied by its weight), and so they are a processing workload amenable to a chip design that favors massive parallelism.

Let's make this a little more concrete by walking through an example of the types of operations that take advantage of the performance characteristics...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime