Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Data Science and Python Machine Learning

You're reading from   Hands-On Data Science and Python Machine Learning Perform data mining and machine learning efficiently using Python and Spark

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781787280748
Length 420 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Frank Kane Frank Kane
Author Profile Icon Frank Kane
Frank Kane
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Getting Started FREE CHAPTER 2. Statistics and Probability Refresher, and Python Practice 3. Matplotlib and Advanced Probability Concepts 4. Predictive Models 5. Machine Learning with Python 6. Recommender Systems 7. More Data Mining and Machine Learning Techniques 8. Dealing with Real-World Data 9. Apache Spark - Machine Learning on Big Data 10. Testing and Experimental Design

A PCA example with the Iris dataset

Let's apply principal component analysis to the Iris dataset. This is a 4D dataset that we're going to reduce down to 2 dimensions. We're going to see that we can actually still preserve most of the information in that dataset, even by throwing away half of the dimensions. It's pretty cool stuff, and it's pretty simple too. Let's dive in and do some principal component analysis and cure the curse of dimensionality. Go ahead and open up the PCA.ipynb file.

It's actually very easy to do using scikit-learn, as usual! Again, PCA is a dimensionality reduction technique. It sounds very science-fictiony, all this talk of higher dimensions. But, just to make it more concrete and real again, a common application is image compression. You can think of an image of a black and white picture, as 3 dimensions, where you...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image