Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Artificial Intelligence for Beginners

You're reading from   Hands-On Artificial Intelligence for Beginners An introduction to AI concepts, algorithms, and their implementation

Arrow left icon
Product type Paperback
Published in Oct 2018
Publisher Packt
ISBN-13 9781788991063
Length 362 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
David Dindi David Dindi
Author Profile Icon David Dindi
David Dindi
Patrick D. Smith Patrick D. Smith
Author Profile Icon Patrick D. Smith
Patrick D. Smith
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. The History of AI 2. Machine Learning Basics FREE CHAPTER 3. Platforms and Other Essentials 4. Your First Artificial Neural Networks 5. Convolutional Neural Networks 6. Recurrent Neural Networks 7. Generative Models 8. Reinforcement Learning 9. Deep Learning for Intelligent Agents 10. Deep Learning for Game Playing 11. Deep Learning for Finance 12. Deep Learning for Robotics 13. Deploying and Maintaining AI Applications 14. Other Books You May Enjoy

Deploying your applications

So, what does it mean to deploy a model? Deployment is an all-encompassing term that covers the process of taking a tested and validated model from your local computer, and setting it up in a sustainable environment where it's accessible. Deployment can be handled in a myriad of ways; in this chapter, we'll focus on the knowledge and best practices that you should know about to get your models up into production.

Your choice of deployment architecture depends on a few things:

  • Is your model being trained in one environment and productionalized in another?
  • How many times are you expecting your model to be called predictions to be made from it?
  • Is your data changing over time or is it static? Will you need to handle large inflows of data?

Each of these questions can be answered by breaking down our model selection options into two buckets...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image