Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hadoop Beginner's Guide

You're reading from   Hadoop Beginner's Guide Get your mountain of data under control with Hadoop. This guide requires no prior knowledge of the software or cloud services – just a willingness to learn the basics from this practical step-by-step tutorial.

Arrow left icon
Product type Paperback
Published in Feb 2013
Publisher Packt
ISBN-13 9781849517300
Length 398 pages
Edition 1st Edition
Tools
Arrow right icon
Toc

Table of Contents (19) Chapters Close

Hadoop Beginner's Guide
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. What It's All About FREE CHAPTER 2. Getting Hadoop Up and Running 3. Understanding MapReduce 4. Developing MapReduce Programs 5. Advanced MapReduce Techniques 6. When Things Break 7. Keeping Things Running 8. A Relational View on Data with Hive 9. Working with Relational Databases 10. Data Collection with Flume 11. Where to Go Next Pop Quiz Answers Index

Summary


We have covered a lot of ground in this chapter and we now have the foundation to explore MapReduce in more detail. Specifically, we learned how key/value pairs is a broadly applicable data model that is well suited to MapReduce processing. We also learned how to write mapper and reducer implementations using the 0.20 and above versions of the Java API.

We then moved on and saw how a MapReduce job is processed and how the map and reduce methods are tied together by significant coordination and task-scheduling machinery. We also saw how certain MapReduce jobs require specialization in the form of a custom partitioner or combiner.

We also learned how Hadoop reads data to and from the filesystem. It uses the concept of InputFormat and OutputFormat to handle the file as a whole and RecordReader and RecordWriter to translate the format to and from key/value pairs.

With this knowledge, we will now move on to a case study in the next chapter, which demonstrates the ongoing development and...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image