Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Generative Adversarial Networks Projects

You're reading from   Generative Adversarial Networks Projects Build next-generation generative models using TensorFlow and Keras

Arrow left icon
Product type Paperback
Published in Jan 2019
Publisher Packt
ISBN-13 9781789136678
Length 316 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Kailash Ahirwar Kailash Ahirwar
Author Profile Icon Kailash Ahirwar
Kailash Ahirwar
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Introduction to Generative Adversarial Networks FREE CHAPTER 2. 3D-GAN - Generating Shapes Using GANs 3. Face Aging Using Conditional GAN 4. Generating Anime Characters Using DCGANs 5. Using SRGANs to Generate Photo-Realistic Images 6. StackGAN - Text to Photo-Realistic Image Synthesis 7. CycleGAN - Turn Paintings into Photos 8. Conditional GAN - Image-to-Image Translation Using Conditional Adversarial Networks 9. Predicting the Future of GANs 10. Other Books You May Enjoy

Variants of GANs

There are currently thousands of different GANs available and this number is increasing at a phenomenal rate. In this section, we will explore six popular GAN architectures, which we will cover in more detail in the subsequent chapters of this book.

Deep convolutional generative adversarial networks

Alec Radford, Luke Metz, and Soumith Chintala proposed deep convolutional GANs (DCGANs) in a paper titled Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, which is available at the following link: https://arxiv.org/pdf/1511.06434.pdf. Vanilla GANs don't usually have convolutional neural networks (CNNs) in their networks. This was proposed for the first time with the introduction of DCGANs. We will learn how to generate anime character faces using DCGANs in Chapter 3, Face Aging Using Conditional GANs.

StackGANs

StackGANs were proposed by Han Zhang, Tao Xu, Hongsheng Li, and others in their paper titled StackGAN: Text to Photo-Realistic Image Synthesis with Stacked Generative Adversarial Networks, which is available at the following link: https://arxiv.org/pdf/1612.03242.pdf. They used StackGANs to explore text-to-image synthesis with impressive results. A StackGAN is a pair of networks that generate realistic looking images when provided with a text description. We will learn how to generate realistic looking images from text descriptions using a StackGAN in Chapter 6, StackGAN – Text to Photo-Realistic Image Synthesis.

CycleGANs

CycleGANs were proposed by Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros in a paper titled Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, which is available at the following link: https://arxiv.org/pdf/1703.10593. CycleGANs have some really interesting potential uses, such as converting photos to paintings and vice versa, converting a picture taken in summer to a photo taken in winter and vice versa, or converting pictures of horses to pictures of zebras and vice versa. We will learn how to turn paintings into photos using a CycleGAN in Chapter 7, CycleGAN - Turn Paintings into Photos.

3D-GANs

3D-GANs were proposed by Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T. Freeman, and Joshua B. Tenenbaum in their paper titled Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling, which is available at the following link: https://arxiv.org/pdf/1610.07584. Generating 3D models of objects has many use cases in manufacturing and the 3D modeling industry. A 3D-GAN network is able to generate new 3D models of different objects, once trained on 3D models of objects. We will learn how to generate 3D models of objects using a 3D-GAN in Chapter 2, 3D-GAN - Generating Shapes Using GAN.

Age-cGANs

Face aging with Conditional GANs was proposed by Grigory Antipov, Moez Baccouche, and Jean-Luc Dugelay in their paper titled Face Aging with Conditional Generative Adversarial Networks, which is available at the following link: https://arxiv.org/pdf/1702.01983.pdf. Face aging has many industry use cases, including cross-age face recognition, finding lost children, and in entertainment. We will learn how to train a conditional GAN to generate a face given a target age in Chapter 3, Face Aging Using Conditional GAN.

pix2pix

The pix2pix network was introduced by Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros in their paper titled Image-to-Image Translation with Conditional Adversarial Networks, which is available at the following link: https://arxiv.org/abs/1611.07004. The pix2pix network has similar use cases to the CycleGAN network. It can convert building labels to pictures of buildings (we will see a similar example in the pix2pix chapter), black and white images to color images, images taken in the day to night images, sketches to photos, and aerial images to map-like images.

For a list of all the GANs in existence, refer to The GAN Zoo, an article by Avinash Hindupur available at https://github.com/hindupuravinash/the-gan-zoo.
You have been reading a chapter from
Generative Adversarial Networks Projects
Published in: Jan 2019
Publisher: Packt
ISBN-13: 9781789136678
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime