As we know, convolution layers are really good at processing images. They are capable of learning important features, such as edges, shapes, and complex objects, effectively, as shown in neural networks, such as Inception, AlexNet, Visual Geometry Group (VGG), and ResNet. Ian Goodfellow and others proposed a Generative Adversarial Network (GAN) with dense layers in their paper titled Generative Adversarial Nets, which can be found at the following link: https://arxiv.org/pdf/1406.2661.pdf. Complex neural networks, such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Long Short-Term Memory (LSTM) were not initially tested in GANs. The development of Deep Convolutional Generative Adversarial Networks (DCGANs) was an important step toward using CNNs for image generation. A DCGAN uses convolutional layers instead...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand