Structuring your MLOps
The primary goal of MLOps is to make an organization or set of individuals collaborate efficiently to build data and ML-driven assets to solve their business problems. As a result, overall performance and transparency are increased. Working in silos or developing functionalities repeatedly can be extremely costly and time-consuming.
In this section, we will explore how MLOps can be structured within organizations. Getting the MLOps process right is of prime importance. By selecting the right process and tools for your MLOps, you and your team are all set to implement a robust, scalable, frugal, and sustainable MLOps process. For example, I recently helped one of my clients in the healthcare industry to build and optimize their MLOps, which resulted in 76% cost optimization (for storage and compute resources) compared to their previous traditional operations.
The client's team of data scientists witnessed having 30% of their time freed up from mundane...