Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Deep Learning with MXNet Cookbook

You're reading from   Deep Learning with MXNet Cookbook Discover an extensive collection of recipes for creating and implementing AI models on MXNet

Arrow left icon
Product type Paperback
Published in Dec 2023
Publisher Packt
ISBN-13 9781800569607
Length 370 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Andrés P. Torres Andrés P. Torres
Author Profile Icon Andrés P. Torres
Andrés P. Torres
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Chapter 1: Up and Running with MXNet 2. Chapter 2: Working with MXNet and Visualizing Datasets – Gluon and DataLoader FREE CHAPTER 3. Chapter 3: Solving Regression Problems 4. Chapter 4: Solving Classification Problems 5. Chapter 5: Analyzing Images with Computer Vision 6. Chapter 6: Understanding Text with Natural Language Processing 7. Chapter 7: Optimizing Models with Transfer Learning and Fine-Tuning 8. Chapter 8: Improving Training Performance with MXNet 9. Chapter 9: Improving Inference Performance with MXNet 10. Index 11. Other Books You May Enjoy

Evaluating regression models

In the previous recipe, we learned how to choose our training hyperparameters to optimize our training. We also verified how those choices affected the training and validation losses. In this recipe, we are going to explore how those choices affect our actual evaluation in the real world. The observant reader will have noticed that we split the dataset into three different sets: training, validation, and test. However, during our training, we only used the training set and the validation set. In this recipe, we will emulate some real-world behavior of our model by running it on the unseen data, the test set.

Getting ready

When evaluating a model, we can perform qualitative evaluation and quantitative evaluation:

  • Qualitative evaluation is the selection of one or more random (or not so random, depending on what we are looking for) samples and analyzing the result, verifying whether it matches our expectations.
  • Quantitative evaluation deals...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image