Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning with Keras

You're reading from   Deep Learning with Keras Implementing deep learning models and neural networks with the power of Python

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781787128422
Length 318 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Antonio Gulli Antonio Gulli
Author Profile Icon Antonio Gulli
Antonio Gulli
Sujit Pal Sujit Pal
Author Profile Icon Sujit Pal
Sujit Pal
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Neural Networks Foundations FREE CHAPTER 2. Keras Installation and API 3. Deep Learning with ConvNets 4. Generative Adversarial Networks and WaveNet 5. Word Embeddings 6. Recurrent Neural Network — RNN 7. Additional Deep Learning Models 8. AI Game Playing 9. Conclusion

Mission

The book presents more than 20 working deep neural networks coded in Python using Keras, a modular neural network library that runs on top of either Google's TensorFlow or Lisa Lab's Theano backends.

The reader is introduced step by step to supervised learning algorithms such as simple linear regression, classical multilayer perceptron, and more sophisticated deep convolutional networks and generative adversarial networks. In addition, the book covers unsupervised learning algorithms such as autoencoders and generative networks. Recurrent networks and long short-term memory (LSTM) networks are also explained in detail. The book goes on to cover the Keras functional API and how to customize Keras in case the reader's use case is not covered by Keras's extensive functionality. It also looks at larger, more complex systems composed of the building blocks covered previously. The book concludes with an introduction to deep reinforcement learning and how it can be used to build game playing AIs.

Practical applications include code for the classification of news articles into predefined categories, syntactic analysis of texts, sentiment analysis, synthetic generation of texts, and parts of speech annotation. Image processing is also explored, with recognition of handwritten digit images, classification of images into different categories, and advanced object recognition with related image annotations. An example of identification of salient points for face detection will be also provided. Sound analysis comprises recognition of discrete speeches from multiple speakers. Reinforcement learning is used to build a deep Q-learning network capable of playing games autonomously.

Experiments are the essence of the book. Each net is augmented by multiple variants that progressively improve the learning performance by changing the input parameters, the shape of the network, loss functions, and algorithms used for optimizations. Several comparisons between training on CPUs and GPUs are also provided.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image