Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Modeling for Azure Data Services

You're reading from   Data Modeling for Azure Data Services Implement professional data design and structures in Azure

Arrow left icon
Product type Paperback
Published in Jul 2021
Publisher Packt
ISBN-13 9781801077347
Length 428 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Peter ter Braake Peter ter Braake
Author Profile Icon Peter ter Braake
Peter ter Braake
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1 – Operational/OLTP Databases
2. Chapter 1: Introduction to Databases FREE CHAPTER 3. Chapter 2: Entity Analysis 4. Chapter 3: Normalizing Data 5. Chapter 4: Provisioning and Implementing an Azure SQL DB 6. Chapter 5: Designing a NoSQL Database 7. Chapter 6: Provisioning and Implementing an Azure Cosmos DB Database 8. Section 2 – Analytics with a Data Lake and Data Warehouse
9. Chapter 7: Dimensional Modeling 10. Chapter 8: Provisioning and Implementing an Azure Synapse SQL Pool 11. Chapter 9: Data Vault Modeling 12. Chapter 10: Designing and Implementing a Data Lake Using Azure Storage 13. Section 3 – ETL with Azure Data Factory
14. Chapter 11: Implementing ETL Using Azure Data Factory 15. Other Books You May Enjoy

Understanding dimensional modeling

To avoid any confusion, dimensional modeling is a data modeling technique. It leads to a table structure for relational databases. The phrase "table structure" says it all. We are going to store data in tables. We could use Azure SQL Database to implement this database. We will use Azure Synapse Analytics in Chapter 8, Provisioning and Implementing an Azure Synapse SQL Pool, to implement the database. Dimensional modeling, in other words, is an alternative to normalizing data. It will use relationships between tables based on primary keys and foreign keys.

Let's briefly reiterate the main principles we had for normalizing data and look at why they are not helpful when creating a database that should be optimized for analytics. These main principles involved in normalizing data are as follows:

  • Minimize redundancy.
  • Use dependencies between attributes.

Minimizing redundancy

Minimizing redundancy makes writing into...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime