Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Build Your Own Programming Language

You're reading from   Build Your Own Programming Language A programmer's guide to designing compilers, interpreters, and DSLs for modern computing problems

Arrow left icon
Product type Paperback
Published in Jan 2024
Publisher Packt
ISBN-13 9781804618028
Length 556 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Clinton  L. Jeffery Clinton L. Jeffery
Author Profile Icon Clinton L. Jeffery
Clinton L. Jeffery
Arrow right icon
View More author details
Toc

Table of Contents (27) Chapters Close

Preface 1. Section I: Programming Language Frontends
2. Why Build Another Programming Language? FREE CHAPTER 3. Programming Language Design 4. Scanning Source Code 5. Parsing 6. Syntax Trees 7. Section II: Syntax Tree Traversals
8. Symbol Tables 9. Checking Base Types 10. Checking Types on Arrays, Method Calls, and Structure Accesses 11. Intermediate Code Generation 12. Syntax Coloring in an IDE 13. Section III: Code Generation and Runtime Systems
14. Preprocessors and Transpilers 15. Bytecode Interpreters 16. Generating Bytecode 17. Native Code Generation 18. Implementing Operators and Built-In Functions 19. Domain Control Structures 20. Garbage Collection 21. Final Thoughts 22. Section IV: Appendix
23. Answers
24. Other Books You May Enjoy
25. Index
Appendix: Unicon Essentials

Grasping the importance of garbage collection

In the beginning, programs were small, and the static allocation of memory was decided when a program was designed. The code was not that complicated, and programmers could lay out all the memory that they were going to use during the entire program as a set of global variables. Life was good. A lot of programmers would prefer to just stick with static allocation, and in certain niche application domains, that remains feasible.

For the rest of us, Moore’s Law happened, and computers got bigger. Data got bigger. Customers started demanding that programs handle arbitrary-sized data instead of accepting the fixed upper limits inherent in static allocation. Programmers invented structured programming and used function calls to organize larger programs in which most memory allocation was on the stack.

A stack provides a form of dynamic memory allocation. Stacks are great because you can allocate a big chunk of memory when a function...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image