Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Big Data Analytics with Java

You're reading from   Big Data Analytics with Java Data analysis, visualization & machine learning techniques

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781787288980
Length 418 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
RAJAT MEHTA RAJAT MEHTA
Author Profile Icon RAJAT MEHTA
RAJAT MEHTA
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Big Data Analytics with Java FREE CHAPTER 2. First Steps in Data Analysis 3. Data Visualization 4. Basics of Machine Learning 5. Regression on Big Data 6. Naive Bayes and Sentiment Analysis 7. Decision Trees 8. Ensembling on Big Data 9. Recommendation Systems 10. Clustering and Customer Segmentation on Big Data 11. Massive Graphs on Big Data 12. Real-Time Analytics on Big Data 13. Deep Learning Using Big Data Index

Summary


In this chapter, we covered a very important and popular algorithm in machine learning called as decision trees. A decision tree is very similar to a flowchart and is based on a set of rules. A decision tree algorithm learns from a dataset and builds a set of rules. Based on these rules, it splits the dataset into two (in the case of binary splits) or more parts. When a new data is fed in for predictions based on the attributes of the data, a particular path is taken and this follows along the full path of rules in the tree until a particular response is reached.

There are many ways in which we can split data in a decision tree. We explored two of the most common ways called Entropy and Gini Impurity. In either of these cases, the main criteria is to use the split mechanism, which makes the split set as homogeneous as possible. Both Entropy and Gini Impurity are mathematical formulas or approaches and as such the entire model works on numerical data.

In the next chapter, we will learn...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image