Databricks is a unified big data and analytics platform. It is great for training ML models and working with the kind of large-scale data that is often found in IoT. There are extensions such as Delta Lake that allow researchers the ability to view data as it existed at certain periods of time so that they can do analysis when models drift. There are also tools such as MLflow that allow the data scientist to compare multiple models against each other. In this recipe, we are going to install various ML packages such as TensorFlow, PyTorch, and GraphFrames on Databricks. Most ML packages can be installed via PyPI. The format used to install TensorFlow, for example, will work on various ML frameworks such as OpenAI Gym, Sonnet, Keras, and MXNet. Some tools are available in Databricks that are not available in Python. For those, we use the pattern explored by GraphX and GraphFrame where packages are installed through Java extensions.
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine