Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Applied Unsupervised Learning with Python

You're reading from   Applied Unsupervised Learning with Python Discover hidden patterns and relationships in unstructured data with Python

Arrow left icon
Product type Paperback
Published in May 2019
Publisher
ISBN-13 9781789952292
Length 482 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Benjamin Johnston Benjamin Johnston
Author Profile Icon Benjamin Johnston
Benjamin Johnston
Christopher Kruger Christopher Kruger
Author Profile Icon Christopher Kruger
Christopher Kruger
Aaron Jones Aaron Jones
Author Profile Icon Aaron Jones
Aaron Jones
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Applied Unsupervised Learning with Python
Preface
1. Introduction to Clustering 2. Hierarchical Clustering FREE CHAPTER 3. Neighborhood Approaches and DBSCAN 4. Dimension Reduction and PCA 5. Autoencoders 6. t-Distributed Stochastic Neighbor Embedding (t-SNE) 7. Topic Modeling 8. Market Basket Analysis 9. Hotspot Analysis Appendix

Fundamentals of Artificial Neural Networks


Given that autoencoders are based on artificial neural networks, an understanding of how neural networks is also critical for understanding autoencoders. This section of the chapter will briefly review the fundamentals of artificial neural networks. It is important to note that there are many aspects of neural nets that are outside of the scope of this book. The topic of neural networks could easily, and has, filled many books on its own, and this section is not to be considered an exhaustive discussion of the topic.

As described earlier, artificial neural networks are primarily used in supervised learning problems, where we have a set of input information, say a series of images, and we are training an algorithm to map the information to a desired output, such as a class or category. Consider the CIFAR-10 dataset () as an example, which contains images of 10 different categories (airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime